Skip to main content

Methodology for Use of Mitochondria-Targeted Cations in the Field of Oxidative Stress-Related Research

  • Protocol
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1265))

Abstract

For many pathological conditions, reactive oxygen species (ROS) generated in mitochondria are considered to have a role as a trigger. When mitochondrial ROS (mROS) are formed in the inner mitochondrial membrane, they initiate free radical-mediated chain reactions of lipid peroxidation and are thus especially damaging. The consequences of membrane damage are decreased electrical resistance of the membrane, oxidative damage to cardiolipin (a mitochondria specific lipid essential for functioning of respiratory chain proteins and H+-ATP synthase), and damage to mitochondrial DNA localized in close vicinity to the inner membrane, with consequent mitochondrial dysfunction and induction of apoptotic cascade and cell death. To target the starting point of such undesirable events, antioxidants conjugated with mitochondria-targeted, membrane-penetrating cations can be used to scavenge ROS inside mitochondria. The most demonstrative indications favoring this conclusion originate from recent discoveries of the in vivo effects of such cations belonging to the MitoQ and SkQ groups. Here we describe some essential methodological aspects of the application of mitochondria-targeted cations promising in treating oxidative stress-related pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skulachev VP (2005) How to clean the dirtiest place in the cell: cationic antioxidants as intramitochondrial ROS scavengers. IUBMB Life 57:305–310

    Article  CAS  PubMed  Google Scholar 

  2. Liberman EA, Topaly VP, Tsofina LM, Jasaitis AA, Skulachev VP (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature 222:1076–1078

    Article  CAS  PubMed  Google Scholar 

  3. Grinius LL, Jasaitis AA, Kadziauskas YP, Liberman EA, Skulachev VP, Topali VP, Tsofina LM, Vladimirova MA (1970) Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles. Biochim Biophys Acta 216:1–12

    Article  CAS  PubMed  Google Scholar 

  4. Bakeeva LE, Grinius LL, Jasaitis AA, Kuliene VV, Levitsky DO, Liberman EA, Severina II, Skulachev VP (1970) Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria. Biochim Biophys Acta 216:13–21

    Article  CAS  PubMed  Google Scholar 

  5. Isaev PI, Liberman EA, Samuilov VD, Skulachev VP, Tsofina LM (1970) Conversion of biomembrane-produced energy into electric form. III. Chromatophores of Rhodospirillum rubrum. Biochim Biophys Acta 216:22–29

    Article  CAS  PubMed  Google Scholar 

  6. Liberman EA, Skulachev VP (1970) Conversion of biomembrane-produced energy into electric form. IV. General discussion. Biochim Biophys Acta 216:30–42

    Article  CAS  PubMed  Google Scholar 

  7. Skulachev VP (1988) Membrane bioenergetics. Springer, Berlin

    Book  Google Scholar 

  8. Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RA, Murphy MP (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem 276:4588–4596

    Article  CAS  PubMed  Google Scholar 

  9. James AM, Cocheme HM, Smith RA, Murphy MP (2005) Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. J Biol Chem 280:21295–21312

    Article  CAS  PubMed  Google Scholar 

  10. O'Malley Y, Fink BD, Ross NC, Prisinzano TE, Sivitz WI (2006) Reactive oxygen and targeted antioxidant administration in endothelial cell mitochondria. J Biol Chem 281:39766–39775

    Article  PubMed  Google Scholar 

  11. Doughan AK, Dikalov SI (2007) Mitochondrial redox cycling of mitoquinone leads to superoxide production and cellular apoptosis. Antioxid Redox Signal 9:1825–1836

    Article  CAS  PubMed  Google Scholar 

  12. Antonenko YN, Avetisyan AV, Bakeeva LE, Chernyak BV, Chertkov VA, Domnina LV, Ivanova OY, Izyumov DS, Khailova LS, Klishin SS, Korshunova GA, Lyamzaev KG, Muntyan MS, Nepryakhina OK, Pashkovskaya AA, Pletjushkina OY, Pustovidko AV, Roginsky VA, Rokitskaya TI, Ruuge EK, Saprunova VB, Severina II, Simonyan RA, Skulachev IV, Skulachev MV, Sumbatyan NV, Sviryaeva IV, Tashlitsky VN, Vassiliev JM, Vyssokikh MY, Yaguzhinsky LS, Zamyatnin AA, Skulachev VP (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies. Biochemistry (Mosc) 73:1273–1287

    Article  CAS  Google Scholar 

  13. Tauskela JS (2007) MitoQ-a mitochondria-targeted antioxidant. IDrugs 10:399–412

    CAS  PubMed  Google Scholar 

  14. Kruk J, JemiolaRzeminska M, Strzalka K (1997) Plastoquinol and alpha-tocopherol quinol are more active than ubiquinol and alpha-tocopherol in inhibition of lipid peroxidation. Chem Phys Lipids 87:73–80

    Article  CAS  Google Scholar 

  15. Skulachev VP, Anisimov VN, Antonenko YN, Bakeeva LE, Chernyak BV, Erichev VP, Filenko OF, Kalinina NI, Kapelko VI, Kolosova NG, Kopnin BP, Korshunova GA, Lichinitser MR, Obukhova LA, Pasyukova EG, Pisarenko OI, Roginsky VA, Ruuge EK, Senin II, Severina II, Skulachev MV, Spivak IM, Tashlitsky VN, Tkachuk VA, Vyssokikh MY, Yaguzhinsky LS, Zorov DB (2009) An attempt to prevent senescence: a mitochondrial approach. Biochim Biophys Acta 1787:437–461

    Article  CAS  PubMed  Google Scholar 

  16. Antonenko YN, Avetisyan AV, Cherepanov DA, Knorre DA, Korshunova GA, Markova OV, Ojovan SM, Perevoshchikova IV, Pustovidko AV, Rokitskaya TI, Severina II, Simonyan RA, Smirnova EA, Sobko AA, Sumbatyan NV, Severin FF, Skulachev VP (2011) Derivatives of rhodamine 19 as mild mitochondria-targeted cationic uncouplers. J Biol Chem 286:17831–17840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Rokitskaya TI, Klishin SS, Severina II, Skulachev VP, Antonenko YN (2008) Kinetic analysis of permeation of mitochondria-targeted antioxidants across bilayer lipid membranes. J Membr Biol 224:9–19

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Skulachev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Vyssokikh, M.Y., Antonenko, Y.N., Lyamzaev, K.G., Rokitskaya, T.I., Skulachev, V.P. (2015). Methodology for Use of Mitochondria-Targeted Cations in the Field of Oxidative Stress-Related Research. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine. Methods in Molecular Biology, vol 1265. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2288-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2288-8_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2287-1

  • Online ISBN: 978-1-4939-2288-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics