Skip to main content

Computational Approaches to Developing Short Cyclic Peptide Modulators of Protein–Protein Interactions

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1268))

Abstract

Cyclic peptides are a promising class of bioactive molecules potentially capable of modulating “difficult” targets, such as protein–protein interactions. Cyclic peptides have long been used as therapeutics derived from natural product derivatives, but remain an underexplored class of compounds from the perspective of rational drug design, possibly due to the known weaknesses of peptide drugs in general.

While cyclic peptides are non“druglike” by the accepted empirical rules, their unique structure may lend itself to both membrane permeability and proteolytic resistance—the main barriers to oral delivery. The constrained shape of cyclic peptides also lends itself better to virtual screening approaches, and new tools and successes in this area have been recently noted. An increasing number of strategies are available, both to generate and screen cyclic peptide libraries, and best practises and current successes are described within.

This chapter will describe various computational strategies for virtual screening cyclic peptides, along with known implementations and applications. We will explore the generation and screening of diverse combinatorial virtual libraries, incorporating a range of cyclization strategies and structural modifications. More advanced approaches covered include evolutionary algorithms designed to aid in screening large structural libraries, machine learning approaches, and harnessing bioinformatics resources to bias cyclic peptide virtual libraries towards known bioactive structures.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Martins MB, Carvalho I (2007) Diketopiperazines: biological activity and synthesis. Tetrahedron 63:9923–9932

    CAS  Google Scholar 

  2. Brakhage AA (1998) Molecular regulation of beta-lactam biosynthesis in filamentous fungi. Microbiol Mol Biol Rev 62:547–585

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450:1001–1009

    CAS  PubMed  Google Scholar 

  4. Huigens RW et al (2013) A ring-distortion strategy to construct stereochemically complex and structurally diverse compounds from natural products. Nat Chem. doi:10.1038/nchem.1549

    PubMed Central  PubMed  Google Scholar 

  5. Beck A, Wurch T, Bailly C, Corvaia N (2010) Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 10:345–352

    CAS  PubMed  Google Scholar 

  6. Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7:21–39

    CAS  PubMed  Google Scholar 

  7. Chames P, Van Regenmortel M, Weiss E, Baty D (2009) Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 157:220–233

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Roxin Á, Zheng G (2012) Flexible or fixed: a comparative review of linear and cyclic cancer-targeting peptides. Future Med Chem 4:1601–1618

    CAS  PubMed  Google Scholar 

  9. Driggers EM, Hale SP, Lee J, Terrett NK (2008) The exploration of macrocycles for drug discovery–an underexploited structural class. Nat Rev Drug Discov 7:608–624

    CAS  PubMed  Google Scholar 

  10. Kotz J (2012) Bringing macrocycles full circle. Sci Exch 5

    Google Scholar 

  11. Schwarzer D, Finking R, Marahiel MA (2003) Nonribosomal peptides: from genes to products. 275–287. 10.1039/b111145k

  12. Mullard A (2012) Protein–protein interaction inhibitors get into the groove. Nat Rev Drug Discov 11:173–175

    CAS  PubMed  Google Scholar 

  13. Verdine GL, Hilinski GJ (2012) Stapled peptides for intracellular drug targets. Methods Enzymol 503:3–33, Elsevier Inc

    CAS  PubMed  Google Scholar 

  14. Arrowsmith J (2011) Trial watch: phase III and submission failures: 2007-2010. Nat Rev Drug Discov 10:87

    CAS  PubMed  Google Scholar 

  15. Snyder PW et al (2011) Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase. Proc Natl Acad Sci U S A 108:17889–17894

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Freire E (2008) Do enthalpy and entropy distinguish first in class from best in class? Drug Discov Today 13:869–874

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Biela A et al (2012) Ligand Binding Stepwise Disrupts Water Network in Thrombin: Enthalpic and Entropic Changes Reveal Classical Hydrophobic Effect. J Med Chem 55:6094–6110

    CAS  PubMed  Google Scholar 

  18. Hamman JH, Enslin GM, Kotzé AF (2005) Oral delivery of peptide drugs: barriers and developments. BioDrugs 19:165–177

    CAS  PubMed  Google Scholar 

  19. Ranade V (1991) Drug delivery systems 5A. Oral drug delivery. J Clin Pharmacol 31:2–16

    CAS  PubMed  Google Scholar 

  20. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    CAS  Google Scholar 

  21. Rezai T, Yu B, Millhauser GL, Jacobson MP, Lokey RS (2006) Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. J Am Chem Soc 128:2510–2511

    CAS  PubMed  Google Scholar 

  22. Biron E et al (2008) Improving oral bioavailability of peptides by multiple N-methylation: somatostatin analogues. Angew Chem Int Ed Engl 47:2595–2599

    CAS  PubMed  Google Scholar 

  23. Ovadia O et al (2011) The effect of multiple N-methylation on intestinal permeability of cyclic hexapeptides. Mol Pharm 8:479–487

    CAS  PubMed  Google Scholar 

  24. White TR et al (2011) On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds. Nat Chem Biol 7:810–817

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Doedens L et al (2010) Multiple N-methylation of MT-II backbone amide bonds leads to melanocortin receptor subtype hMC1R selectivity: pharmacological and conformational studies. J Am Chem Soc 132:8115–8128

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Dechantsreiter MA et al (1999) N-Methylated cyclic RGD peptides as highly active and selective alpha(V)beta(3) integrin antagonists. J Med Chem 42:3033–3040

    CAS  PubMed  Google Scholar 

  27. Roberts MJ, Bentley MD, Harris JM (2012) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 64:116–127

    Google Scholar 

  28. Cefalu WT (2004) Concept, Strategies, and Feasibility of Noninvasive Insulin Delivery. Diabetes Care 27:239–246

    PubMed  Google Scholar 

  29. Chen X, Park R, Shahinian AH, Bading JR, Conti PS (2004) Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. Nucl Med Biol 31:11–19

    CAS  PubMed  Google Scholar 

  30. Rubio-Aliaga I, Daniel H (2002) Mammalian peptide transporters as targets for drug delivery. Trends Pharmacol Sci 23:434–440

    CAS  PubMed  Google Scholar 

  31. Habberfield A (1996) Vitamin B12-mediated uptake of erythropoietin and granulocyte colony stimulating factor in vitro and in vivo. Int J Pharm 145:1–8

    CAS  Google Scholar 

  32. Rawlings ND, Morton FR, Kok CY, Kong J, Barrett AJ (2008) MEROPS: the peptidase database. Nucleic Acids Res 36:D320–D325

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Hedstrom L (2002) Serine protease mechanism and specificity. Chem Rev 102:4501–4524

    CAS  PubMed  Google Scholar 

  34. Rozek A, Powers J-PS, Friedrich CL, Hancock REW (2003) Structure-based design of an indolicidin peptide analogue with increased protease stability. Biochemistry 42:14130–14138

    CAS  PubMed  Google Scholar 

  35. Getz JA, Rice JJ, Daugherty PS (2011) Protease-resistant peptide ligands from a knottin scaffold library. ACS Chem Biol 6:837–844

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Guichard G et al (1994) Antigenic mimicry of natural L-peptides with retro-inverso-peptidomimetics. Proc Natl Acad Sci U S A 91:9765–9769

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Fernandez-Lopez S et al (2001) Antibacterial agents based on the cyclic D,L-alpha-peptide architecture. Nature 412:452–455

    CAS  PubMed  Google Scholar 

  38. Young TS et al (2011) Evolution of cyclic peptide protease inhibitors. Proc Natl Acad Sci U S A 108:11052–11056

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Wang W, Jiang J, Ballard CE, Wang B (1999) Prodrug approaches to the improved delivery of peptide drugs. Curr Pharm Des 5:265–287

    CAS  PubMed  Google Scholar 

  40. T Borchardt R, Jeffrey A, Siahaan T, Gangwar S, Pauletti G (1997) Improvement of oral peptide bioavailability: Peptidomimetics and prodrug strategies. Adv Drug Deliv Rev 27:235–256

    PubMed  Google Scholar 

  41. Ward P, Tippin T, Thakker D (2000) Enhancing paracellular permeability by modulating epithelial tight junctions. Pharm Sci Technolo Today 3:346–358

    CAS  PubMed  Google Scholar 

  42. Amiram M, Luginbuhl KM, Li X, Feinglos MN, Chilkoti A (2013) Injectable protease-operated depots of glucagon-like peptide-1 provide extended and tunable glucose control. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1214518110

    PubMed Central  PubMed  Google Scholar 

  43. Whitty A, Kumaravel G (2006) Between a rock and a hard place? Nat Chem Biol 2:112–118

    CAS  PubMed  Google Scholar 

  44. Betzi S et al (2007) Protein protein interaction inhibition (2P2I) combining high throughput and virtual screening: Application to the HIV-1 Nef protein. Proc Natl Acad Sci U S A 104:19256–19261

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Lo Conte L, Chothia C, Janin J (1999) The atomic structure of protein-protein recognition sites. J Mol Biol 285:2177–2198

    CAS  PubMed  Google Scholar 

  46. London N, Movshovitz-Attias D, Schueler-Furman O (2010) The structural basis of peptide-protein binding strategies. Structure 18:188–199

    CAS  PubMed  Google Scholar 

  47. Metz A et al (2012) Hot spots and transient pockets: predicting the determinants of small-molecule binding to a protein-protein interface. J Chem Inf Model 52:120–133

    CAS  PubMed  Google Scholar 

  48. Arbor S, Kao J, Wu Y, Marshall GR (2008) c[D-pro-Pro-D-pro-N-methyl-Ala] adopts a rigid conformation that serves as a scaffold to mimic reverse-turns. Biopolymers 90:384–393

    CAS  PubMed  Google Scholar 

  49. Larregola M, Lequin O, Karoyan P, Guianvarc’h D, Lavielle S (2011) beta-Amino acids containing peptides and click-cyclized peptide as beta-turn mimics: a comparative study with “conventional” lactam- and disulfide-bridged hexapeptides. J Pept Sci 17:632–643

    CAS  PubMed  Google Scholar 

  50. Tyndall JD, Pfeiffer B, Abbenante G, Fairlie DP (2005) Over one hundred peptide-activated G protein-coupled receptors recognize ligands with turn structure. Chem Rev 105:793–826

    CAS  PubMed  Google Scholar 

  51. Fasan R et al (2004) Using aβ-Hairpin To Mimic anα-Helix: Cyclic Peptidomimetic Inhibitors of the p53–HDM2 Protein–Protein Interaction. Angew Chemie 116:2161–2164

    Google Scholar 

  52. Gould CM et al (2010) ELM: the status of the 2010 eukaryotic linear motif resource. Nucleic Acids Res 38:D167–D180

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Reardon DA et al (2008) Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J Clin Oncol 26:5610–5617

    CAS  PubMed  Google Scholar 

  54. Colombo G et al (2002) Structure-activity relationships of linear and cyclic peptides containing the NGR tumor-homing motif. J Biol Chem 277:47891–47897

    CAS  PubMed  Google Scholar 

  55. Gril B et al (2007) Grb2-SH3 ligand inhibits the growth of HER2+ cancer cells and has antitumor effects in human cancer xenografts alone and in combination with docetaxel. Int J Cancer 121:407–415

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Petsalaki E, Russell RB (2008) Peptide-mediated interactions in biological systems: new discoveries and applications. Curr Opin Biotechnol 19:344–350

    CAS  PubMed  Google Scholar 

  57. Vanhee P et al (2010) PepX: a structural database of non-redundant protein-peptide complexes. Nucleic Acids Res 38:D545–D551

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Stanfield RL, Wilson IA (1995) Protein-peptide interactions. Curr Opin Struct Biol 5:103–113

    CAS  PubMed  Google Scholar 

  59. Luckett S et al (1999) High-resolution structure of a potent, cyclic proteinase inhibitor from sunflower seeds. J Mol Biol 290:525–533

    CAS  PubMed  Google Scholar 

  60. Gaulton A et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Systems D. C. I. (2011) SMARTS—A language for describing molecular patterns. (2008)

    Google Scholar 

  62. Lamberts SW, van der Lely AJ, de Herder WW, Hofland LJ (1996) Octreotide. N Engl J Med 334:246–254

    CAS  PubMed  Google Scholar 

  63. Andresen V et al (2007) Effect of 5 days linaclotide on transit and bowel function in females with constipation-predominant irritable bowel syndrome. Gastroenterology 133:761–768

    CAS  PubMed  Google Scholar 

  64. Mack CM et al (2010) Davalintide (AC2307), a novel amylin-mimetic peptide: enhanced pharmacological properties over native amylin to reduce food intake and body weight. Int J Obes (Lond) 34(385–95)

    Google Scholar 

  65. Kallen J, Mikol V, Taylor P, Walkinshaw MD (1998) X-ray structures and analysis of 11 cyclosporin derivatives complexed with cyclophilin A. J Mol Biol 283:435–449

    CAS  PubMed  Google Scholar 

  66. Pande J, Szewczyk MM, Grover AK (2010) Phage display : Concept, innovations, applications and future. Biotechnol Adv 28:849–858

    CAS  PubMed  Google Scholar 

  67. Hoogenboom HR et al (1998) Antibody phage display technology and its applications. Immunotechnology 4:1–20

    CAS  PubMed  Google Scholar 

  68. Willats WGT (2002) Phage display: practicalities and prospects. Plant Mol Biol 50(6):837–854

    CAS  PubMed  Google Scholar 

  69. McLafferty MA, Kent RB, Ladner RC, Markland W (1993) M13 bacteriophage displaying disulfide-constrained microproteins. Gene 128:29–36

    CAS  PubMed  Google Scholar 

  70. Horswill AR, Benkovic SJ (2005) Cyclic peptides, a chemical genetics tool for biologists. Cell Cycle 4:552–555

    CAS  PubMed  Google Scholar 

  71. Kritzer JA et al (2009) Rapid selection of cyclic peptides that reduce -synuclein toxicity in yeast and animal models. Nat Chem Biol 5:655–663

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Gale EF, Taylor ES (1946) Action of tyrocidine and detergents in liberating amino acids from bacterial cells. Nature 157:549

    CAS  PubMed  Google Scholar 

  73. Arbeit RD, Maki D, Tally FP, Campanaro E, Eisenstein BI (2004) The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis 38:1673–1681

    CAS  PubMed  Google Scholar 

  74. Dawson R (1998) the toxicology of microcystins. Toxicon 36:953–962

    CAS  PubMed  Google Scholar 

  75. Namikoshi M et al (1994) New nodularins: a general method for structure assignment. J Org Chem 59:2349–2357

    CAS  Google Scholar 

  76. Goodin S, Kane MP, Rubin EH (2004) Epothilones: mechanism of action and biologic activity. J Clin Oncol 22:2015–2025

    CAS  PubMed  Google Scholar 

  77. Domingo GJ, Leatherbarrow RJ, Freeman N, Patel S, Weir M (1995) Synthesis of a mixture of cyclic peptides based on the Bowman-Birk reactive site loop to screen for serine protease inhibitors. Int J Pept Protein Res 46:79–87

    CAS  PubMed  Google Scholar 

  78. Evers A, Hessler G, Matter H, Klabunde T (2005) Virtual screening of biogenic amine-binding G-protein coupled receptors: comparative evaluation of protein- and ligand-based virtual screening protocols. J Med Chem 48:5448–5465

    CAS  PubMed  Google Scholar 

  79. Warren GL et al (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49:5912–5931

    CAS  PubMed  Google Scholar 

  80. Anderson S (1984) Graphical representation of molecules and substructure-search queries in MACCStm. J Mol Graph 2:83–90

    CAS  Google Scholar 

  81. Daylight Chemical Information Systems (2012) Daylight Toolkit www.daylight.com

  82. Ballester PJ, Richards WG (2007) Ultrafast shape recognition to search compound databases for similar molecular shapes. J Comput Chem 28:1711–1723

    CAS  PubMed  Google Scholar 

  83. Schreyer AM, Blundell T (2012) USRCAT: real-time ultrafast shape recognition with pharmacophoric constraints. J Cheminform 4:27

    CAS  PubMed Central  PubMed  Google Scholar 

  84. GRANT JA, GALLARDO MA, PICKUP BT (1996) A fast method of molecular shape comparison: A simple application of a Gaussian description of molecular shape. J Comput Chem 17:1653–1666

    CAS  Google Scholar 

  85. Sastry GM, Dixon SL, Sherman W (2011) Rapid shape-based ligand alignment and virtual screening method based on atom/feature-pair similarities and volume overlap scoring. J Chem Inf Model 51:2455–2466

    CAS  PubMed  Google Scholar 

  86. Taminau J, Thijs G, De Winter H (2008) Pharao: pharmacophore alignment and optimization. J Mol Graph Model 27:161–169

    CAS  PubMed  Google Scholar 

  87. Chemical Computing Group (2012) Molecule operating environment (MOE) http://www.chemcomp.com/index.htm

  88. Koes DR, Camacho CJ (2011) Pharmer: efficient and exact pharmacophore search. J Chem Inf Model 51:1307–1314

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Inc, A. S. Discovery Studio Modelling Environment (2012) http://accelrys.com/products/discovery-studio/

    Google Scholar 

  90. Mosca R, Pons C, Fernández-Recio J, Aloy P (2009) Pushing structural information into the yeast interactome by high-throughput protein docking experiments. PLoS Comput Biol 5:e1000490

    PubMed Central  PubMed  Google Scholar 

  91. Yuriev E, Agostino M, Ramsland PA (2009) Challenges and advances in computational docking: 2009 in review. J Mol Recognit 24:149–164

    Google Scholar 

  92. Tripos International (2010) Sybyl-X. St. Louis, Missouri. Retrieved from http://www.certara.com/products/molmod/sybyl-x.

  93. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Lang PT et al (2009) DOCK 6: combining techniques to model RNA-small molecule complexes. RNA 15:1219–1230

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Berman HM et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Zsoldos Z, Reid D, Simon A, Sadjad SB, Johnson AP (2007) eHiTS: a new fast, exhaustive flexible ligand docking system. J Mol Graph Model 26:198–212

    CAS  PubMed  Google Scholar 

  97. Viji SN, Prasad PA, Gautham N (2009) Protein-ligand docking using mutually orthogonal Latin squares (MOLSDOCK). J Chem Inf Model 49:2687–2694

    CAS  PubMed  Google Scholar 

  98. Pearce BC, Langley DR, Kang J, Huang H, Kulkarni A (2009) E-novo: an automated workflow for efficient structure-based lead optimization. J Chem Inf Model 49:1797–1809

    CAS  PubMed  Google Scholar 

  99. Morris GM et al (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    CAS  PubMed Central  PubMed  Google Scholar 

  100. OpenEye Scientific Software (2010) OEChem. Retrieved from http://www.eyesopen.com/oechem-tk

  101. Schrodinger LLC (2012). Schrodinger. https://www.schrodinger.com/

  102. Landrum G. RDKit: Open-source cheminformatics. at http://www.rdkit.org

  103. O’Boyle NM et al (2011) Open Babel: An open chemical toolbox. J Cheminform 3:33

    PubMed Central  PubMed  Google Scholar 

  104. Steinbeck C et al (2006) Recent developments of the Chemistry Development Kit (CDK)—An open-source Java library for chemo- and bioinformatics. Curr Pharm Des 12:2111–2120

    CAS  PubMed  Google Scholar 

  105. Guha R et al (2006) The Blue Obelisk-interoperability in chemical informatics. J Chem Inf Model 46:991–998

    CAS  PubMed  Google Scholar 

  106. Mazanetz MP, Marmon RJ, Reisser CBT, Morao I (2012) Drug Discovery Applications for KNIME: An Open Source Data Mining Platform. Curr Top Med Chem 12:1965–1979

    CAS  PubMed  Google Scholar 

  107. Irwin JJ, Shoichet BK (2005) ZINC–a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Burns VA, Bobay BG, Basso A, Cavanagh J, Melander C (2008) Targeting RNA with cysteine-constrained peptides. Bioorg Med Chem Lett 18:565–567

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Duffy FJ et al (2011) CycloPs: generating virtual libraries of cyclized and constrained peptides including nonnatural amino acids. J Chem Inf Model 51:829–836

    CAS  PubMed  Google Scholar 

  110. Goldtzvik Y, Goldstein M, Benny Gerber R (2013) On the crystallographic accuracy of structure prediction by implicit water models: Tests for cyclic peptides. Chem Phys 415:168–172

    CAS  Google Scholar 

  111. Ponder JW (2013) Tinker: Software tools for molecular design. http://dasher.wustl.edu/ffe/

    Google Scholar 

  112. O’Boyle NM, Vandermeersch T, Flynn CJ, Maguire AR, Hutchison GR (2011) Confab—Systematic generation of diverse low-energy conformers. J Cheminform 3:8

    PubMed Central  PubMed  Google Scholar 

  113. Jacobson MP et al (2004) A hierarchical approach to all-atom protein loop prediction. Proteins Struct Funct Genet 55:351–367

    CAS  PubMed  Google Scholar 

  114. Ebejer JP, Morris GM, Deane CM (2012) Freely Available Conformer Generation Methods: How Good Are They? J Chem Inf Model. doi:10.1021/ci2004658

    PubMed  Google Scholar 

  115. Venkatraman V, Pérez-Nueno VI, Mavridis L, Ritchie DW (2010) Comprehensive comparison of ligand-based virtual screening tools against the DUD data set reveals limitations of current 3D methods. J Chem Inf Model 50:2079–2093

    CAS  PubMed  Google Scholar 

  116. Merrifield RB (1963) Solid Phase Peptide Synthesis 1. Synthesis of a Tetrapeptide. J Am Chem Soc 85:2149

    CAS  Google Scholar 

  117. Coin I, Beyermann M, Bienert M (2007) Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat Protoc 2:3247–3256

    CAS  PubMed  Google Scholar 

  118. Frank R (2002) The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports–principles and applications. J Immunol Methods 267:13–26

    CAS  PubMed  Google Scholar 

  119. Katz C et al (2011) Studying protein-protein interactions using peptide arrays. Chem Soc Rev 40:2131–2145

    CAS  PubMed  Google Scholar 

  120. Hann MM, Oprea TI (2004) Pursuing the leadlikeness concept in pharmaceutical research. Curr Opin Chem Biol 8:255–263

    CAS  PubMed  Google Scholar 

  121. Dove A (2007) High-throughput screening goes to school. Nat Methods 4:523–532

    CAS  Google Scholar 

  122. Guerrero G, Pérez-Sánchez H, Wenzel W, Cecilia J, García, J (2011) In 5th International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB 2011) (Rocha, M., Rodríguez, J. C., Fdez-Riverola, F. & Valencia, A.) 93:63–69 (Springer Berlin Heidelberg)

    Google Scholar 

  123. Oshiro CM, Kuntz ID, Dixon JS (1995) Flexible ligand docking using a genetic algorithm. J Comput Aided Mol Des 9:113–130

    CAS  PubMed  Google Scholar 

  124. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    CAS  PubMed  Google Scholar 

  125. Morris GM et al (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    CAS  Google Scholar 

  126. Sheridan RP, Kearsley SK (1995) Using a Genetic Algorithm To Suggest Combinatorial Libraries. J Chem Inf Model 35:310–320

    CAS  Google Scholar 

  127. Westhead DR et al (1995) PRO-LIGAND: an approach to de novo molecular design. 3. A genetic algorithm for structure refinement. J Comput Aided Mol Des 9:139–148

    CAS  PubMed  Google Scholar 

  128. Schneider G, Lee ML, Stahl M, Schneider P (2000) De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks. J Comput Aided Mol Des 14:487–494

    CAS  PubMed  Google Scholar 

  129. Schneider G et al (2009) Voyages to the (un)known: adaptive design of bioactive compounds. Trends Biotechnol 27:18–26

    CAS  PubMed  Google Scholar 

  130. Belda I et al (2005) ENPDA: an evolutionary structure-based de novo peptide design algorithm. J Comput Aided Mol Des 19:585–601

    CAS  PubMed  Google Scholar 

  131. Hohm T, Limbourg P, Hoffmann D (2006) A multiobjective evolutionary method for the design of peptidic mimotopes. J Comput Biol 13:113–125

    CAS  PubMed  Google Scholar 

  132. Knapp B, Giczi V, Ribarics R, Schreiner W (2011) PeptX: using genetic algorithms to optimize peptides for MHC binding. BMC Bioinformatics 12:241

    PubMed Central  PubMed  Google Scholar 

  133. Jin Y (2003) A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput 9:3–12

    Google Scholar 

  134. Sousa SF, Fernandes PA, Ramos MJ (2006) Protein-ligand docking: current status and future challenges. Proteins 65:15–26

    CAS  PubMed  Google Scholar 

  135. Baker JE (1987) Reducing bias and inefficiency in the selection algorithm. Proc Second Int Conf Genet algorithms 14–21

    Google Scholar 

  136. Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press http://books.google.ie/books?id=cyV7nQEACAAJ

  137. Back T (1998) Selective pressure in evolutionary algorithms: a characterization of selection mechanisms. Proc First IEEE Conf Evol Comput IEEE World Congr Comput Intell 57–62 doi:10.1109/ICEC.1994.350042

  138. London N, Raveh B, Movshovitz-Attias D, Schueler-Furman O (2010) Can self-inhibitory peptides be derived from the interfaces of globular protein-protein interactions? Proteins 78:3140–3149

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Xu Y (2012) Rahman, N. a B. D., Othman, R., Hu, P. & Huang, M. Computational identification of self-inhibitory peptides from envelope proteins. Proteins 80:2154–2168

    CAS  PubMed  Google Scholar 

  140. Edwards RJ et al (2007) Bioinformatic discovery of novel bioactive peptides. Nat Chem Biol 3:108–112

    CAS  PubMed  Google Scholar 

  141. Kotsiantis S (2007) Supervised Machine Learning: A Review of Classification Techniques. Inform 31

    Google Scholar 

  142. Nielsen H, Brunak S, von Heijne G (1999) Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng 12:3–9

    CAS  PubMed  Google Scholar 

  143. Fjell CD et al (2009) Identification of novel antibacterial peptides by chemoinformatics and machine learning. J Med Chem 52:2006–2015

    CAS  PubMed  Google Scholar 

  144. Khan W, Duffy F, Pollastri G, Shields DC, Mooney C (2013) Predicting Binding within Disordered Protein Regions to Structurally Characterised Peptide-Binding Domains. PLoS One 8:e72838

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Cherkasov A (2005) Inductive Descriptors: 10 Successful Years in QSAR. Curr Comput Aided-Drug Des 1:21–42

    CAS  Google Scholar 

  146. Norris R, Casey F, FitzGerald RJ, Shields D, Mooney C (2012) Predictive modelling of angiotensin converting enzyme inhibitory dipeptides. Food Chem 133:1349–1354

    CAS  Google Scholar 

  147. Arbor S, Marshall GR (2009) A virtual library of constrained cyclic tetrapeptides that mimics all four side-chain orientations for over half the reverse turns in the protein data bank. J Comput Mol Des 23:87–95

    CAS  Google Scholar 

  148. Raveh B, London N, Zimmerman L, Schueler-Furman O (2011) Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors. PLoS One 6:e18934

    CAS  PubMed Central  PubMed  Google Scholar 

  149. London N, Gullá S, Keating AE, Schueler-Furman O (2012) In silico and in vitro elucidation of BH3 binding specificity toward Bcl-2. Biochemistry 51:5841–5850

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Mandal PK et al (2009) Conformationally constrained peptidomimetic inhibitors of signal transducer and activator of transcription. 3: Evaluation and molecular modeling. J Med Chem 52:2429–2442

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Flohr S et al (2002) Identification of Nonpeptidic Urotensin II Receptor Antagonists by Virtual Screening Based on a Pharmacophore Model Derived from Structure − Activity Relationships and Nuclear Magnetic Resonance Studies on Urotensin II. J Med Chem 45:1799–1805

    CAS  PubMed  Google Scholar 

  152. Alexopoulos K et al (2001) Design, synthesis, and modeling of novel cyclic thrombin receptor-derived peptide analogues of the Ser42-Phe-Leu-Leu-Arg46 motif sequence with fixed conformations of pharmacophoric groups: importance of a Phe/Arg/NH2 cluster for receptor activation and im. J Med Chem 44:328–339

    CAS  PubMed  Google Scholar 

  153. Xiao Q, Pei D (2007) High-throughput synthesis and screening of cyclic peptide antibiotics. J Med Chem 50:3132–3137

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Lee Y, Kang D-K, Chang S-I, Han MH, Kang I-C (2004) High-throughput screening of novel peptide inhibitors of an integrin receptor from the hexapeptide library by using a protein microarray chip. J Biomol Screen 9:687–694

    CAS  PubMed  Google Scholar 

  155. Harndahl M et al (2009) Peptide binding to HLA class I molecules: homogenous, high-throughput screening, and affinity assays. J Biomol Screen 14:173–180

    CAS  PubMed  Google Scholar 

  156. Schneider G (2010) Virtual screening: an endless staircase? Nat Rev Drug Discov 9:273–276

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Science Foundation Ireland (grant 08 IN.1 B1864) for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis C. Shields .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Duffy, F.J., Devocelle, M., Shields, D.C. (2015). Computational Approaches to Developing Short Cyclic Peptide Modulators of Protein–Protein Interactions. In: Zhou, P., Huang, J. (eds) Computational Peptidology. Methods in Molecular Biology, vol 1268. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2285-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2285-7_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2284-0

  • Online ISBN: 978-1-4939-2285-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics