Skip to main content

Information-Driven Modeling of Protein-Peptide Complexes

  • Protocol
  • First Online:
Computational Peptidology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1268))

Abstract

Despite their biological importance in many regulatory processes, protein-peptide recognition mechanisms are difficult to study experimentally at the structural level because of the inherent flexibility of peptides and the often transient interactions on which they rely. Complementary methods like biomolecular docking are therefore required. The prediction of the three-dimensional structure of protein-peptide complexes raises unique challenges for computational algorithms, as exemplified by the recent introduction of protein-peptide targets in the blind international experiment CAPRI (Critical Assessment of PRedicted Interactions). Conventional protein-protein docking approaches are often struggling with the high flexibility of peptides whose short sizes impede protocols and scoring functions developed for larger interfaces. On the other side, protein-small ligand docking methods are unable to cope with the larger number of degrees of freedom in peptides compared to small molecules and the typically reduced available information to define the binding site. In this chapter, we describe a protocol to model protein-peptide complexes using the HADDOCK web server, working through a test case to illustrate every steps. The flexibility challenge that peptides represent is dealt with by combining elements of conformational selection and induced fit molecular recognition theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tzakos AG, Fuchs P, van Nuland NA et al (2004) NMR and molecular dynamics studies of an autoimmune myelin basic protein peptide and its antagonist: structural implications for the MHC II (I-Au)-peptide complex from docking calculations. Eur J Biochem 271:3399–3413

    Article  CAS  PubMed  Google Scholar 

  2. Musi V, Birdsall B, Fernandez-Ballester G et al (2006) New approaches to high-throughput structure characterization of SH3 complexes: the example of Myosin-3 and Myosin-5 SH3 domains from S. cerevisiae. Protein Sci 15:795–807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Huang BX, Kim H-Y (2006) Interdomain conformational changes in Akt activation revealed by chemical cross-linking and tandem mass spectrometry. Mol Cell Proteomics 5:1045–1053

    Article  CAS  PubMed  Google Scholar 

  4. Casares S, Ab E, Eshuis H et al (2007) The high-resolution NMR structure of the R21A Spc-SH3:P41 complex: understanding the determinants of binding affinity by comparison with Abl-SH3. BMC Struct Biol 7:22

    Article  PubMed Central  PubMed  Google Scholar 

  5. Gelis I, Bonvin AM, Keramisanou D et al (2007) Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131:756–769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Schneider T, Kruse T, Wimmer R et al (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science 328:1168–1172

    Article  CAS  PubMed  Google Scholar 

  7. Wodak SJ, Janin J (1978) Computer analysis of protein-protein interaction. J Mol Biol 124:323–342

    Article  CAS  PubMed  Google Scholar 

  8. Strynadka NCJ, Eisenstein M, Katchalski-Katzir E et al (1996) Molecular docking programs successfully predict the binding of a β-lactamase inhibitory protein to TEM-1 β-lactamase. Nat Struct Mol Biol 3:233–239

    Article  CAS  Google Scholar 

  9. Petsalaki E, Russell RB (2008) Peptide-mediated interactions in biological systems: new discoveries and applications. Curr Opin Biotechnol 19:344–350

    Article  CAS  PubMed  Google Scholar 

  10. Stein A, Aloy P (2008) Contextual specificity in peptide-mediated protein interactions. PLoS One 3:e2524

    Article  PubMed Central  PubMed  Google Scholar 

  11. London N, Movshovitz-Attias D, Schueler-Furman O (2010) The structural basis of peptide-protein binding strategies. Structure 18:188–199

    Article  CAS  PubMed  Google Scholar 

  12. London N, Raveh B, Schueler-Furman O (2013) Peptide docking and structure-based characterization of peptide binding: from knowledge to know-how. Curr Opin Struct Biol 23:894–902

    Article  CAS  PubMed  Google Scholar 

  13. Petsalaki E, Stark A, Garcia-Urdiales E, Russell RB (2009) Accurate prediction of peptide binding sites on protein surfaces. PLoS Comput Biol 5:e1000335

    Article  PubMed Central  PubMed  Google Scholar 

  14. Antes I (2010) DynaDock: a new molecular dynamics-based algorithm for protein-peptide docking including receptor flexibility. Proteins 78:1084–1104

    Article  CAS  PubMed  Google Scholar 

  15. Raveh B, London N, Schueler-Furman O (2010) Sub-angstrom modeling of complexes between flexible peptides and globular proteins. Proteins 78:2029–2040

    CAS  PubMed  Google Scholar 

  16. Ben-Shimon A, Eisenstein M (2010) Computational mapping of anchoring spots on protein surfaces. J Mol Biol 402:259–277

    Article  CAS  PubMed  Google Scholar 

  17. Dagliyan O, Proctor EA, D’Auria KM et al (2011) Structural and dynamic determinants of protein-peptide recognition. Structure 19:1837–1845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Raveh B, London N, Zimmerman L, Schueler-Furman O (2011) Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors. PLoS One 6:e18934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Donsky E, Wolfson HJ (2011) PepCrawler: a fast RRT-based algorithm for high-resolution refinement and binding affinity estimation of peptide inhibitors. Bioinformatics 27:2836–2842

    Article  CAS  PubMed  Google Scholar 

  20. Lavi A, Ngan CH, Movshovitz-Attias D et al (2013) Detection of peptide-binding sites on protein surfaces: the first step toward the modeling and targeting of peptide-mediated interactions. Proteins 81:2096–2105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Verschueren E, Vanhee P, Rousseau F et al (2013) Protein-peptide complex prediction through fragment interaction patterns. Structure 21:789–797

    Article  CAS  PubMed  Google Scholar 

  22. De Vries SJ, van Dijk AD, Krzeminski M et al (2007) HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets. Proteins 69:726–733

    Article  PubMed  Google Scholar 

  23. Trellet M, Melquiond ASJ, Bonvin AMJJ (2013) A unified conformational selection and induced fit approach to protein-peptide docking. PLoS One 8:e58769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737

    Article  CAS  PubMed  Google Scholar 

  25. Brünger AT, Adams PD, Clore GM et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921

    Article  PubMed  Google Scholar 

  26. Brunger AT (2007) Version 1.2 of the crystallography and NMR system. Nat Protoc 2:2728–2733

    Article  CAS  PubMed  Google Scholar 

  27. Jorgensen WL, Tirado-Rives J (1988) The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110:1657–1666

    Article  CAS  Google Scholar 

  28. Moreira IS, Fernandes PA, Ramos MJ (2010) Protein-protein docking dealing with the unknown. J Comput Chem 31:317–342

    CAS  PubMed  Google Scholar 

  29. Lensink MF, Wodak SJ (2013) Docking, scoring, and affinity prediction in CAPRI. Proteins 81:2082–2095

    Article  CAS  PubMed  Google Scholar 

  30. Diella F, Haslam N, Chica C et al (2008) Understanding eukaryotic linear motifs and their role in cell signaling and regulation. Front Biosci 13:6580–6603

    Article  CAS  PubMed  Google Scholar 

  31. Van Dijk ADJ, Boelens R, Bonvin AMJJ (2005) Data-driven docking for the study of biomolecular complexes. FEBS J 272:293–312

    Article  PubMed  Google Scholar 

  32. Melquiond ASJ, Bonvin AMJJ (2010) Data-driven docking: using external information to spark the biomolecular rendez-vous. In: Protein-protein complexes: analysis, modelling and drug design. Edited by M. Zacharrias, Imperial College Press, London, p 183–209

    Google Scholar 

  33. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  34. Janin J, Henrick K, Moult J et al (2003) CAPRI: a Critical Assessment of PRedicted Interactions. Proteins 52:2–9

    Article  CAS  PubMed  Google Scholar 

  35. Lensink MF, Wodak SJ (2010) Docking and scoring protein interactions: CAPRI 2009. Proteins 78:3073–3084

    Article  CAS  PubMed  Google Scholar 

  36. Schrodinger L (2010) The PyMOL molecular graphics system, version 1.3r1

    Google Scholar 

  37. Claude J-B, Suhre K, Notredame C et al (2004) CaspR: a web server for automated molecular replacement using homology modelling. Nucleic Acids Res 32:W606–W609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre M. J. J. Bonvin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Trellet, M., Melquiond, A.S.J., Bonvin, A.M.J.J. (2015). Information-Driven Modeling of Protein-Peptide Complexes. In: Zhou, P., Huang, J. (eds) Computational Peptidology. Methods in Molecular Biology, vol 1268. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2285-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2285-7_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2284-0

  • Online ISBN: 978-1-4939-2285-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics