Skip to main content

Drug Affinity Responsive Target Stability (DARTS) for Small-Molecule Target Identification

  • Protocol
  • First Online:
Book cover Chemical Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1263))

Abstract

Drug affinity responsive target stability (DARTS) is a relatively quick and straightforward approach to identify potential protein targets for small molecules. It relies on the protection against proteolysis conferred on the target protein by interaction with a small molecule. The greatest advantage of this method is being able to use the native small molecule without having to immobilize or modify it (e.g., by incorporation of biotin, fluorescent, radioisotope, or photoaffinity labels). Here we describe in detail the protocol for performing unbiased DARTS with complex protein lysates to identify binding targets of small molecules and for using DARTS-Western blotting to test, screen, or validate potential small-molecule targets. Although the ideas have mainly been developed from studying molecules in areas of biology that are currently of interest to us and our collaborators, the general principles should be applicable to the analysis of all molecules in nature.

*These authors are contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O'Connor CJ, Laraia L, Spring DR (2011) Chemical genetics. Chem Soc Rev 40:4332–4345

    Article  PubMed  Google Scholar 

  2. Yang GX, Li X, Snyder M (2012) Investigating metabolite-protein interactions: an overview of available techniques. Methods 57:459–466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. McFedries A, Schwaid A, Saghatelian A (2013) Methods for the elucidation of protein-small molecule interactions. Chem Biol 20:667–673

    Article  CAS  PubMed  Google Scholar 

  4. Rask-Andersen M, Masuram S, Schioth HB (2014) The druggable genome: evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication. Annu Rev Pharmacol Toxicol 54:9–26

    Article  CAS  PubMed  Google Scholar 

  5. Lomenick B, Olsen RW, Huang J (2011) Identification of direct protein targets of small molecules. ACS Chem Biol 6:34–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ong SE et al (2012) Identifying cellular targets of small-molecule probes and drugs with biochemical enrichment and SILAC. Methods Mol Biol 803:129–140

    Article  CAS  PubMed  Google Scholar 

  7. Ziegler S et al (2013) Target identification for small bioactive molecules: finding the needle in the haystack. Angew Chem Int Ed Engl 52:2744–2792

    Article  CAS  PubMed  Google Scholar 

  8. Futamura Y, Muroi M, Osada H (2013) Target identification of small molecules based on chemical biology approaches. Mol Biosyst 9:897–914

    Article  CAS  PubMed  Google Scholar 

  9. Lomenick B et al (2009) Target identification using drug affinity responsive target stability (DARTS). Proc Natl Acad Sci U S A 106:21984–21989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Robinson TJ et al (2013) High-throughput screen identifies disulfiram as a potential therapeutic for triple-negative breast cancer cells: interaction with IQ motif-containing factors. Cell Cycle 12:3013–3024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Chin RM et al (2014) The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature. doi:10.1038/nature13264

    PubMed  Google Scholar 

  12. Lomenick B et al (2011) Target identification using drug affinity responsive target stability (DARTS). Curr Protoc Chem Biol 3:163–180

    PubMed Central  PubMed  Google Scholar 

  13. Tohda C et al (2012) Diosgenin is an exogenous activator of 1,25D(3)-MARRS/Pdia3/ERp57 and improves Alzheimer's disease pathologies in 5XFAD mice. Sci Rep 2:535

    Article  PubMed Central  PubMed  Google Scholar 

  14. Sun W et al (2014) Chemical signatures and new drug targets for gametocytocidal drug development. Sci Rep 4:3743

    PubMed Central  PubMed  Google Scholar 

  15. Aghajan M et al (2010) Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase. Nat Biotechnol 28:738–742

    Article  CAS  PubMed  Google Scholar 

  16. Chen T et al (2011) Chemical genetics identify eIF2alpha kinase heme-regulated inhibitor as an anticancer target. Nat Chem Biol 7:610–616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Gao S et al (2012) The chemistry and biology of nakiterpiosin—C-nor-D-homosteroids. Synlett 16:2298–2310

    PubMed Central  PubMed  Google Scholar 

  18. Xu S et al (2013) Stabilization of MDA-7/IL-24 for colon cancer therapy. Cancer Lett 335:421–430

    Article  CAS  PubMed  Google Scholar 

  19. Lim M et al (2014) Ligand-independent and tissue-selective androgen receptor inhibition by pyrvinium. ACS Chem Biol 9:692–702

    Article  CAS  PubMed  Google Scholar 

  20. Li H et al (2014) Drug design targeting protein-protein interactions (PPIs) using multiple ligand simultaneous docking (MLSD) and drug repositioning: discovery of raloxifene and bazedoxifene as novel inhibitors of IL-6/GP130 interface. J Med Chem 57:632–641

    Article  CAS  PubMed  Google Scholar 

  21. Molina DM et al (2013) Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341:84–87

    Article  CAS  Google Scholar 

  22. Kragten E et al (1998) Glyceraldehyde-3-phosphate dehydrogenase, the putative target of the antiapoptotic compounds CGP 3466 and R-(-)-deprenyl. J Biol Chem 273:5821–5828

    Article  CAS  PubMed  Google Scholar 

  23. Lundberg E et al (2010) Defining the transcriptome and proteome in three functionally different human cell lines. Mol Syst Biol 6:450

    Article  PubMed Central  PubMed  Google Scholar 

  24. Geiger T et al (2012) Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol Cell Proteomics 11:M111 014050

    Article  PubMed Central  PubMed  Google Scholar 

  25. Geiger T et al (2013) Initial quantitative proteomic map of 28 mouse tissues using the SILAC mouse. Mol Cell Proteomics 12:1709–1722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by the US National Institutes of Health grants R01 CA124974 (J.H.), R21 CA149774 (J.H.), U19 AI067769 (W.B.), R01 GM103479 (J.A.L.), R01 GM104610 (J.A.L.), and training grants to M.Y.P. (T32 GM007185) and B.L. (T32 CA009120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pai, M.Y. et al. (2015). Drug Affinity Responsive Target Stability (DARTS) for Small-Molecule Target Identification. In: Hempel, J., Williams, C., Hong, C. (eds) Chemical Biology. Methods in Molecular Biology, vol 1263. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2269-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2269-7_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2268-0

  • Online ISBN: 978-1-4939-2269-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics