Skip to main content

Fluorous Photoaffinity Labeling to Probe Protein-Small Molecule Interactions

  • Protocol
  • First Online:
Chemical Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1263))

  • 5191 Accesses

Abstract

Identifying cellular targets of bioactive small molecules is essential for their applications as chemical probes or drug candidates. Of equal importance is to determine their “off-target” interactions, which usually account for unwanted properties including toxicity. Among strategies to profile small molecule-interacting proteins, photoaffinity labeling has been widely used because of its distinct advantages such as sensitivity. When combined with mass spectrometry, this approach can provide additional structural and mechanistic information, such as drug-target stoichiometry and exact interacting amino acid residues. We have described a novel fluorous photoaffinity labeling approach, in which a fluorous tag is incorporated into the photoaffinity labeling reagent to enable the enrichment of the labeled species from complex mixtures for analysis. This new feature likely makes the fluorous photoaffinity labeling approach suitable to identify transient interactions, and low-abundant, low-affinity interacting proteins in a cellular environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh A, Thorton ER, Westheimer FH (1962) The photolysis of diazoacetylchymotrypsin. J Biol Chem 237:3006–3008

    CAS  PubMed  Google Scholar 

  2. Geurink PP et al (2012) Photoaffinity labeling in activity-based protein profiling. Top Curr Chem 324:85–114

    Article  CAS  PubMed  Google Scholar 

  3. Robinette D et al (2006) Photoaffinity labeling combined with mass spectrometric approaches as a tool for structural proteomics. Expert Rev Proteomics 3:399–408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Steen H, Mann M (2002) A new derivatization strategy for the analysis of phosphopeptides by precursor ion scanning in positive ion mode. J Am Soc Mass Spectrom 13:996–1003

    Article  CAS  PubMed  Google Scholar 

  5. Oda Y, Nagasu T, Chait BT (2001) Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat Biotechnol 19:379–382

    Article  CAS  PubMed  Google Scholar 

  6. Curran DP (2008) Fluorous tags unstick messy chemical biology problems. Science 321:1645–1646

    Article  CAS  PubMed  Google Scholar 

  7. Curran DP (2001) Fluorous reverse phase silica gel. A new tool for preparative separations in synthetic organic and organofluorine chemistry. Synlett 2001:1488–1496

    Article  Google Scholar 

  8. Zhang Q, Luo Z, Curran DP (2000) Separation of “Light Fluorous” reagents and catalysts by fluorous solid-phase extraction: synthesis and study of a family of Triarylphosphines bearing linear and branched fluorous tags. J Org Chem 65:8866–8873

    Article  CAS  PubMed  Google Scholar 

  9. Matsugi M, Curran DP (2005) Synthesis, reaction, and recycle of light fluorous Grubbs-Hoveyda catalysts for alkene metathesis. J Org Chem 70:1636–1642

    Article  CAS  PubMed  Google Scholar 

  10. Hungerhoff B, Sonnenschein H, Theil F (2002) Combining lipase-catalyzed enantiomer-selective acylation with fluorous phase labeling: a new method for the resolution of racemic alcohols. J Org Chem 67:1781–1785

    Article  CAS  PubMed  Google Scholar 

  11. Dandapani S, Curran DP (2002) Fluorous Mitsunobu reagents and reactions. Tetrahedron 58:3855–3864

    Article  CAS  Google Scholar 

  12. Miura T et al (2001) Fluorous oligosaccharide synthesis using a novel fluorous protective group. Org Lett 3:3947–3950

    Article  CAS  PubMed  Google Scholar 

  13. Luo Z et al (2001) Fluorous mixture synthesis: a fluorous-tagging strategy for the synthesis and separation of mixtures of organic compounds. Science 291:1766–1769

    Article  CAS  PubMed  Google Scholar 

  14. Zhang QS et al (2004) Fluorous mixture synthesis of stereoisomer libraries: total syntheses of (+)-murisolin and fifteen diastereoisomers. J Am Chem Soc 126:36–37

    Article  CAS  PubMed  Google Scholar 

  15. Zhang W et al (2002) Solution-phase preparation of a 560-compound library of individual pure mappicine analogues by fluorous mixture synthesis. J Am Chem Soc 124:10443–10450

    Article  CAS  PubMed  Google Scholar 

  16. Ko KS, Jaipuri FA, Pohl NL (2005) Fluorous-based carbohydrate microarrays. J Am Chem Soc 127:13162–13163

    Article  CAS  PubMed  Google Scholar 

  17. Vegas AJ et al (2007) Fluorous-based small-molecule microarrays for the discovery of histone deacetylase inhibitors. Angew Chem Int Ed 46:7960–7964

    Article  CAS  Google Scholar 

  18. Jaipuri FA, Collet BY, Pohl NL (2008) Synthesis and quantitative evaluation of glycero-D-manno-heptose binding to concanavalin A by fluorous-tag assistance. Angew Chem Int Ed 47:1707–1710

    Article  CAS  Google Scholar 

  19. Huang W et al (2014) Fluorous enzymatic synthesis of phosphatidylinositides. Chem Commun 50:2928–2931

    Article  CAS  Google Scholar 

  20. Cai C et al (2014) Fluorous-assisted chemoenzymatic synthesis of heparan sulfate oligosaccharides. Org Lett 16:2240–2243

    Article  CAS  PubMed  Google Scholar 

  21. Brittain SM et al (2005) Enrichment and analysis of peptide subsets using fluorous affinity tags and mass spectrometry. Nat Biotechnol 23:463–468

    Article  CAS  PubMed  Google Scholar 

  22. Northen TR et al (2008) A nanostructure-initiator mass spectrometry-based enzyme activity assay. Proc Natl Acad Sci U S A 105:3678–3683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Song Z, Zhang Q (2009) Fluorous aryldiazirine photoaffinity labeling reagents. Org Lett 11:4882–4885

    Article  CAS  PubMed  Google Scholar 

  24. Song Z, Huang W, Zhang Q (2012) Isotope-coded, fluorous photoaffinity labeling reagents. Chem Commun 48:3339–3341

    Article  CAS  Google Scholar 

  25. Huang W et al (2012) Incorporation of a fluorous diazirine group into phosphatidylinositol 4,5-bisphosphate to illustrate its interaction with ADP-ribosylation factor 1. Org Biomol Chem 10:5197–5201

    Article  CAS  PubMed  Google Scholar 

  26. Goldberg J (1999) Structural and functional analysis of the ARF1–ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Cell 96:893–902

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank the University of North Carolina at Chapel Hill and the National Institutes of Health (GM086558 to Q.Z.) for financial support of this work. We also thank Dr. Jonathan Goldberg (Memorial Sloan-Kettering) for providing the expression vector for ARF1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weigang Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Huang, W., Zhang, Q. (2015). Fluorous Photoaffinity Labeling to Probe Protein-Small Molecule Interactions. In: Hempel, J., Williams, C., Hong, C. (eds) Chemical Biology. Methods in Molecular Biology, vol 1263. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2269-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2269-7_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2268-0

  • Online ISBN: 978-1-4939-2269-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics