Skip to main content

Small-Molecule Screening Using Drosophila Models of Human Neurological Disorders

  • Protocol
  • First Online:
Book cover Chemical Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1263))

Abstract

Within the last decade, Drosophila has emerged as a premiere model system for the study of human neurodegenerative diseases, due to the realization that flies and humans share many structurally and functionally related gene families. Development of such disease models in the fly allows genetic approaches to be applied to address specific hypotheses concerning disease progression and to test candidate modifier genes. More recently these fly models have also been used for drug discovery. Here, we describe how to utilize the existing fruit fly models of human neurological disorders to identify small-molecule leads that could potentially be further developed for therapeutic use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andretic R et al (2008) Drosophila D1 dopamine receptor mediates caffeine-induced arousal. Proc Natl Acad Sci U S A 105:20392–20397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Bainton RJ et al (2000) Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila. Curr Biol 10:187–194

    Article  CAS  PubMed  Google Scholar 

  3. McClung C, Hirsh J (1998) Stereotypic behavioral responses to free-base cocaine and the development of behavioral sensitization in Drosophila. Curr Biol 8:109–112

    Article  CAS  PubMed  Google Scholar 

  4. Moore MS et al (1998) Ethanol intoxication in Drosophila: genetic and pharmacological evidence for regulation by the cAMP signaling pathway. Cell 93:997–1007

    Article  CAS  PubMed  Google Scholar 

  5. Nichols CD et al (2002) Hallucinogens and Drosophila: linking serotonin receptor activation to behavior. Neuroscience 115:979–984

    Article  CAS  PubMed  Google Scholar 

  6. Rothenfluh A, Heberlein U (2002) Drugs, flies, and videotape: the effects of ethanol and cocaine on Drosophila locomotion. Curr Opin Neurobiol 12:639–645

    Article  CAS  PubMed  Google Scholar 

  7. Satta R, Dimitrijevic N, Manev H (2003) Drosophila metabolize 1,4-butanediol into gamma-hydroxybutyric acid in vivo. Eur J Pharmacol 473:149–152

    Article  CAS  PubMed  Google Scholar 

  8. Wolf FW, Heberlein U (2003) Invertebrate models of drug abuse. J Neurobiol 54:161–178

    Article  CAS  PubMed  Google Scholar 

  9. Rubin GM, Spradling AC (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218:348–353

    Article  CAS  PubMed  Google Scholar 

  10. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  11. McGuire SE, Roman G, Davis RL (2004) Gene expression systems in Drosophila: a synthesis of time and space. Trends Genet 20:384–391

    Article  CAS  PubMed  Google Scholar 

  12. Roman G et al (2001) P[Switch], a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proc Natl Acad Sci U S A 98:12602–12607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Dietzl G et al (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151–156

    Article  CAS  PubMed  Google Scholar 

  14. Pollitt SK et al (2003) A rapid cellular FRET assay of polyglutamine aggregation identifies a novel inhibitor. Neuron 40:685–694

    Article  CAS  PubMed  Google Scholar 

  15. Desai UA et al (2006) Biologically active molecules that reduce polyglutamine aggregation and toxicity. Hum Mol Genet 15:2114–2124

    Article  CAS  PubMed  Google Scholar 

  16. Chang S et al (2008) Identification of small molecules rescuing fragile X syndrome phenotypes in Drosophila. Nat Chem Biol 4:256–263

    Article  CAS  PubMed  Google Scholar 

  17. Warren ST, Sherman SL (2001) The fragile X syndrome. In: Scriver CR, Beaudet al, Valle D, Childs B, Kinzler KW, Vogelstein B (eds) The metabolic & molecular bases of inherited disease. McGraw-Hill Companies, New York, pp 1257–1290

    Google Scholar 

  18. Sherman S (2002) Epidemiology. In: Hagerman RJ (ed) Fragile X syndrome: diagnosis, treatment and research. The Johns Hopkins University Press, Baltimore, MD, pp 136–168

    Google Scholar 

  19. Hagerman RJ, Hagerman PJ (2002) The fragile X premutation: into the phenotypic fold. Curr Opin Genet Dev 12:278–283

    Article  CAS  PubMed  Google Scholar 

  20. Hagerman PJ, Hagerman RJ (2004) The fragile-X premutation: a maturing perspective. Am J Hum Genet 74:805–816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Jin P et al (2003) RNA-mediated neurodegeneration caused by the fragile X premutation rCGG repeats in Drosophila. Neuron 39:739–747

    Article  CAS  PubMed  Google Scholar 

  22. Pulak R (2006) Techniques for analysis, sorting, and dispensing of C. elegans on the COPAS flow-sorting system. Methods Mol Biol 351:275–286

    PubMed  Google Scholar 

  23. Ali YO et al (2011) Assaying locomotor, learning, and memory deficits in Drosophila models of neurodegeneration. J Vis Exp 49:2504

    PubMed  Google Scholar 

  24. Scott R et al (2002) CREB and the discovery of cognitive enhancers. J Mol Neurosci 19:171–177

    Article  CAS  PubMed  Google Scholar 

  25. Branson K et al (2009) High-throughput ethomics in large groups of Drosophila. Nat Methods 6:451–457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Dankert H et al (2009) Automated monitoring and analysis of social behavior in Drosophila. Nat Methods 6:297–303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants (R01 NS051630 and R21 NS067461 to P.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Poidevin, M., Zhang, F., Jin, P. (2015). Small-Molecule Screening Using Drosophila Models of Human Neurological Disorders. In: Hempel, J., Williams, C., Hong, C. (eds) Chemical Biology. Methods in Molecular Biology, vol 1263. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2269-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2269-7_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2268-0

  • Online ISBN: 978-1-4939-2269-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics