Skip to main content

Characterization of Mitochondrial Populations During Stem Cell Differentiation

  • Protocol
  • First Online:
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1264))

Abstract

Mitochondrial dynamics play an important role in numerous physiological and pathophysiological phenomena in the developing and adult human heart. Alterations in structural aspects of cellular mitochondrial composition as a function of changes in physiology can easily be visualized using fluorescence microscopy. Commonly, mitochondrial location, number, and morphology are reported qualitatively due to the lack of automated and user-friendly computer-based analysis tools. Mitochondrial Quantification using MATLAB (MQM) is a computer-based tool to quantitatively assess these parameters by analyzing fluorescently labeled mitochondria within the cell; in particular, MQM provides numerical information on the number, area, and location of mitochondria within a cell in a time-efficient, automated, and unbiased way. This chapter describes the use of MQM’s capabilities to quantify mitochondrial changes during human pluripotent stem cell (hPSC) differentiation into spontaneously contracting cardiomyocytes (SC-CMs), which follows physiological pathways of human heart development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park SJ, Shin JH, Jeong JI et al (2014) Down-regulation of mortalin exacerbates Abeta-mediated mitochondrial fragmentation and dysfunction. J Biol Chem 289:2195–2204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Rana A, Rera M, Walker DW (2013) Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc Natl Acad Sci U S A 110:8638–8643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Abou-Sleiman PM, Muqit MM, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7:207–219

    Article  CAS  PubMed  Google Scholar 

  4. Hashimoto M, Rockenstein E, Crews L et al (2003) Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. Neuromolecular Med 4:21–36

    Article  CAS  PubMed  Google Scholar 

  5. Castellani R, Hirai K, Aliev G et al (2002) Role of mitochondrial dysfunction in Alzheimer’s disease. J Neurosci Res 70:357–360

    Article  CAS  PubMed  Google Scholar 

  6. Reddy PH, Beal MF (2008) Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 14:45–53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Yoon Y, Galloway CA, Jhun BS et al (2011) Mitochondrial dynamics in diabetes. Antioxid Redox Signal 14:439–457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Lowell BB, Shulman GI (2005) Mitochondrial dysfunction and type 2 diabetes. Science 307:384–387

    Article  CAS  PubMed  Google Scholar 

  9. Desai SP, Bhatia SN, Toner M et al (2013) Mitochondrial localization and the persistent migration of epithelial cancer cells. Biophys J 104:2077–2088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Chen L, Knowlton AA (2011) Mitochondrial dynamics in heart failure. Congest Heart Fail 17:257–261

    Article  PubMed Central  PubMed  Google Scholar 

  11. Ong SB, Hausenloy DJ (2010) Mitochondrial morphology and cardiovascular disease. Cardiovasc Res 88:16–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Liu S, Bai Y, Huang J et al (2013) Do mitochondria contribute to left ventricular non-compaction cardiomyopathy? New findings from myocardium of patients with left ventricular non-compaction cardiomyopathy. Mol Genet Metab 109:100–106

    Article  CAS  PubMed  Google Scholar 

  13. Dhalla NS, Rangi S, Zieroth S et al (2012) Alterations in sarcoplasmic reticulum and mitochondrial functions in diabetic cardiomyopathy. Exp Clin Cardiol 17:115–120

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Lopaschuk GD, Jaswal JS (2010) Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J Cardiovasc Pharmacol 56:130–140

    Article  CAS  PubMed  Google Scholar 

  15. Folmes CD, Dzeja PP, Nelson TJ et al (2012) Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 11:596–606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Mitra K, Lippincott-Schwartz J (2010) Analysis of mitochondrial dynamics and functions using imaging approaches. Curr Protoc Cell Biol Chapter 4:Unit 4.25.1–21

    Google Scholar 

  17. Chung S, Dzeja PP, Faustino RS et al (2007) Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat Clin Pract Cardiovasc Med 4(Suppl 1):S60–S67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hattori F, Chen H, Yamashita H et al (2010) Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat Methods 7:61–66

    Article  CAS  PubMed  Google Scholar 

  19. Rafelski SM (2013) Mitochondrial network morphology: building an integrative, geometrical view. BMC Biol 11:71

    Article  PubMed Central  PubMed  Google Scholar 

  20. Lian X, Zhang J, Azarin SM et al (2013) Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc 8:162–175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by AHA 13PRE1470078 (P.K.), NSF-CBET-1150854 (E.A.L.), NSF-EPS-1158862 (D.A.D.), and NSF-EEC-1063107 (K.M.D.). D.A.D. is now located at the Department of Biological Sciences, State University of New York at Oswego, Oswego, NY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Lipke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kerscher, P., Bussie, B.S., DeSimone, K.M., Dunn, D.A., Lipke, E.A. (2015). Characterization of Mitochondrial Populations During Stem Cell Differentiation. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine. Methods in Molecular Biology, vol 1264. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2257-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2257-4_37

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2256-7

  • Online ISBN: 978-1-4939-2257-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics