Skip to main content

The Use of FLIM-FRET for the Detection of Mitochondria-Associated Protein Interactions

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1264))

Abstract

Fluorescence lifetime imaging microscopy–Förster resonant energy transfer (FLIM-FRET) is a high-resolution technique for the detection of protein interactions in live cells. As the cost of this technology becomes more competitive and methods are devised to extract more information from the FLIM images, this technique will be increasingly useful for studying protein interactions in live cells. Here we demonstrate the use of the ISS-Alba FLIM/FCS confocal microscope, which was custom-built for supervised automation of FLIM data acquisition. We provide a detailed protocol for collecting and analyzing good FLIM-FRET data. As an example, we use FLIM-FRET to detect the interaction between BclXL and Bad at the mitochondrial outer membrane in live MCF7 breast cancer cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hsu YT (1997) Nonionic detergents induce dimerization among members of the Bcl-2 family. J Biol Chem 272(21):13829–13834

    Article  CAS  PubMed  Google Scholar 

  2. Yang E, Zha JP, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ (1995) Bad, a heterodimeric partner for Bcl-X(L) and Bcl-2, displaces Bax and promotes cell-death. Cell 80(2):285–291

    Article  CAS  PubMed  Google Scholar 

  3. Jaffe HH, Miller AL (1966) The fates of electronic excitation energy. Chem Educ 43(9):469

    Article  CAS  Google Scholar 

  4. Laptenok SP, Borst JW, Mullen KM, van Stokkum IH, Visser AJ, van Amerongen H (2010) Global analysis of Forster resonance energy transfer in live cells measured by fluorescence lifetime imaging microscopy exploiting the rise time of acceptor fluorescence. Phys Chem Chem Phys 12(27):7593–7602

    Article  CAS  PubMed  Google Scholar 

  5. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  6. Stryer L, Haugland RP (1967) Energy transfer – a spectroscopic ruler. Proc Natl Acad Sci U S A 58(2):719–726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Aranovich A, Liu Q, Collins T, Geng F, Dixit S, Leber B, Andrews DW (2012) Differences in the mechanisms of proapoptotic BH3 proteins binding to Bcl-XL and Bcl-2 quantified in live MCF-7 cells. Mol Cell 45(6):754–763

    Article  CAS  PubMed  Google Scholar 

  8. Chen Y, Mills JD, Periasamy A (2003) Protein localization in living cells and tissues using FRET and FLIM. Differentiation 71(9–10):528–541

    Article  CAS  PubMed  Google Scholar 

  9. Markwardt ML, Kremers GJ, Kraft CA, Ray K, Cranfill PJ, Wilson KA, Day RN, Wachter RM, Davidson MW, Rizzo MA (2011) An improved cerulean fluorescent protein with enhanced brightness and reduced reversible photoswitching. PloS One 6(3):e17896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Liu Q, Leber B, Andrews DW (2012) Interactions of pro-apoptotic BH3 proteins with anti-apoptotic Bcl-2 family proteins measured in live MCF-7 cells using FLIM FRET. Cell Cycle 11(19):3536–3542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Andrews .

Editor information

Editors and Affiliations

Appendix

Appendix

// macro to read in all the files and make them in a stack

dir1 = getDirectory("Choose tau Source Directory");

list1 = getFileList(dir1);

for (i=0; i<list1.length; i++) {

    open(dir1+list1[i]);

    nSlices;

    if (nSlices>1) {

        run("Stack to Images");

    }

}

run("Images to Stack", "name=tau title=t");

dir2 = getDirectory("Choose Ch1 Source Directory");

list2 = getFileList(dir2);

for (i=0; i<list2.length; i++) {

    open(dir2+list2[i]);

    nSlices;

    if (nSlices>1) {

        run("Stack to Images");

    }

}

run("Images to Stack", "name=Ch1 title=Ch1");

dir3 = getDirectory("Choose Ch2 Source Directory");

list3 = getFileList(dir3);

for (i=0; i<list3.length; i++) {

    open(dir3+list3[i]);

    nSlices;

    if (nSlices>1) {

        run("Stack to Images");

    }

}

run("Images to Stack", "name=Ch2 title=Ch2");

// to remove the images that have no cells

selectWindow("Ch2");

p=nSlices;

setBatchMode(true);

for (i=1; i<=p; i++) {

    setSlice(i);

    run("Measure");

    image_intensity=getResult("Mean");

    if (image_intensity<7) {

    run("Delete Slice");

    selectWindow("Ch1");

    setSlice(i);

    run("Delete Slice");

    selectWindow("tau");

    setSlice(i);

    run("Delete Slice");

    selectWindow("Ch2");

    i=i-1;

    p=p-1;

    }

}

// remove the bottom pixels (due to the problem of camera aligning) and resave single images into target folder

dir4 = getDirectory("Choose saving Directory");

selectWindow("Ch2");

n=nSlices;

for (i=1; i<=n; i++) {

    setSlice(i);

    run("Duplicate…", "title=Ch2-1");

    run("Canvas Size…", "width=256 height=250 position=Top-Center zero");

        saveAs("Tiff", dir4+"Ch2_"+i+".tif");

    close();

    }

selectWindow("Ch2");

close();

selectWindow("Ch1");

n=nSlices;

for (i=1; i<=n; i++) {

    setSlice(i);

    run("Duplicate…", "title=Ch1-1");

    run("Canvas Size…", "width=256 height=250 position=Top-Center zero");

        saveAs("Tiff", dir4+"Ch1_"+i+".tif");

    close();

    }

selectWindow("Ch1");

close();

selectWindow("tau");

n=nSlices;

for (i=1; i<=n; i++) {

    setSlice(i);

    run("Duplicate…", "title=tau-1");

    run("Canvas Size…", "width=256 height=250 position=Top-Center zero");

        saveAs("Tiff", dir4+"tau_"+i+".tif");

    close();

    }

selectWindow("tau");

close();

selectWindow("Results");

run("Clear Results");

//ROI selection for each image based on Ch2 signals and measure the intensities/lifetimes accordingly

for (i=1; i<=n; i++) {

    open(dir4+"Ch2_"+i+".tif");

    run("Duplicate…", "title=temp1.tif");

    selectWindow("temp1.tif");

    run("Subtract Background…", "rolling=50 stack");

    setAutoThreshold("Default dark");

    //run("Threshold…");

    getThreshold(lower, upper);

    new_lower=lower+50;

    setThreshold(new_lower, upper);

    run("Convert to Mask");

    run("Analyze Particles…", "size=8-Infinity pixel circularity=0.00-1.00 show=Nothing summarize add");

    selectWindow("Ch2_"+i+".tif");

    roiManager("Show None");

    roiManager("Show All");

    roiManager("Measure");

    q=nResults/2;

    o=0;

    for (m=0; m<q; m++) {

        r=m+q;

        max_intensity=getResult("Max", r);

        low_intensity=getResult("Min", r);

        if (max_intensity>1000 || (low_intensity<100 || low_intensity>400)) {

        w=m-o;

        roiManager("Select", w);

        roiManager("Delete");

        o=o+1;

        }

    }

    if (o<q) {

    roiManager("Save", dir4+"ROI"+i+".zip");

    run("Clear Results");

    selectWindow("Ch2_"+i+".tif");

    run("32-bit");

    run("Subtract Background…", "rolling=50 stack");

    roiManager("Show None");

    roiManager("Show All");

    roiManager("Measure");

    selectWindow("Results");

    saveAs("Results", dir4+"Ch2-"+i+".xls");

    run("Clear Results");

    open(dir4+"Ch1_"+i+".tif");

    run("32-bit");

    run("Subtract Background…", "rolling=50 stack");

    roiManager("Show None");

    roiManager("Show All");

    roiManager("Measure");

    selectWindow("Results");

    saveAs("Results", dir4+"Ch1-"+i+".xls");

    run("Clear Results");

    open(dir4+"tau_"+i+".tif");

    roiManager("Show None");

    roiManager("Show All");

    roiManager("Measure");

    selectWindow("Results");

    saveAs("Results", dir4+"tau-"+i+".xls");

    run("Clear Results");

    roiManager("reset");

    run("Close All");

    }

    else {

    run("Clear Results");

    roiManager("reset");

    run("Close All");

    }

}

run("Close All");

Dialog.create("Analysis is done.");

Dialog.show();

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Osterlund, E.J., Liu, Q., Andrews, D.W. (2015). The Use of FLIM-FRET for the Detection of Mitochondria-Associated Protein Interactions. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine. Methods in Molecular Biology, vol 1264. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2257-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2257-4_34

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2256-7

  • Online ISBN: 978-1-4939-2257-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics