Skip to main content

Ultrastructural Analysis of Nuclear Bodies Using Electron Microscopy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1262))

Abstract

Recent immunofluorescent (IF) studies have discovered a variety of nuclear foci that have no known ultrastructurally defined counterpart. Using antibodies as ligands, immuno-electron microscopy (I-EM) is the method of choice for high-resolution recognition of these newly described nuclear compartments. However, noncoding RNAs (ncRNAs) have also been shown to be frequent components, sometimes essential, of nuclear bodies so that electron microscopic in situ hybridization (EM-ISH) can be used as an alternative means to characterize nuclear foci at the EM level. Among the array of protocols available, Lowicryl embedding of chemically fixed cells allows for high preservation of both nuclear structures and antigenicity and provides stable cell and tissue samples that can be re-probed whenever new antibodies or probes become available. Rapid and robust protocols are available for both I-EM and EM-ISH post-embedding techniques so that they can be combined on the same sections, providing ultrastructural and molecular insights into newly “emerging” nuclear bodies.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bouteille M, Kalifat SR, Delarue J (1967) Ultrastructural variations of nuclear bodies in human diseases. J Ultrastruct Res 19(5):474–486

    Article  CAS  PubMed  Google Scholar 

  2. de Thé G, Riviere M, Bernhard W (1960) Examination by electron microscope of the VX2 tumor of the domestic rabbit derived from the Shope papilloma. Bull Cancer 47(4):570–584

    Google Scholar 

  3. Weber AF, Frommes SP (1963) Nuclear bodies: their prevalence, location, and ultrastructure in the calf. Science 141(3584):912–913

    Article  CAS  PubMed  Google Scholar 

  4. Mao YS, Zhang B, Spector DL (2011) Biogenesis and function of nuclear bodies. Trends Genet 27(8):295–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Chen T, Boisvert FM, Bazett-Jones DP, Richard S (1999) A role for the GSG domain in localizing Sam68 to novel nuclear structures in cancer cell lines. Mol Biol Cell 10(9):3015–3033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Griffis ER, Altan N, Lippincott-Schwartz J, Powers MA (2002) Nup98 is a mobile nucleoporin with transcription-dependent dynamics. Mol Biol Cell 13(4):1282–1297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Ernoult-Lange M, Wilczynska A, Harper M, Aigueperse C, Dautry F, Kress M, Weil D (2009) Nucleocytoplasmic traffic of CPEB1 and accumulation in Crm1 nucleolar bodies. Mol Biol Cell 20(1):176–187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hutten S, Prescott A, James J, Riesenberg S, Boulon S, Lam YW, Lamond AI (2011) An intranucleolar body associated with rDNA. Chromosoma 120(5):481–499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Marnef A, Weil D, Standart N (2012) RNA-related nuclear functions of human Pat1b, the P-body mRNA decay factor. Mol Biol Cell 23(1):213–224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Fong KW, Li Y, Wang W, Ma W, Li K, Qi RZ, Liu D, Songyang Z, Chen J (2013) Whole-genome screening identifies proteins localized to distinct nuclear bodies. J Cell Biol 203(1):149–164

    Article  PubMed Central  PubMed  Google Scholar 

  11. Visa N, Puvion-Dutilleul F, Bachellerie JP, Puvion E (1993) Intranuclear distribution of U1 and U2 snRNAs visualized by high resolution in situ hybridization: revelation of a novel compartment containing U1 but not U2 snRNA in HeLa cells. Eur J Cell Biol 60(2):308–321

    CAS  PubMed  Google Scholar 

  12. Puvion-Dutilleul F, Bachellerie JP, Puvion E (1991) Nucleolar organization of HeLa cells as studied by in situ hybridization. Chromosoma 100(6):395–409

    Article  CAS  PubMed  Google Scholar 

  13. Hutchinson JN, Ensminger AW, Clemson CM, Lynch CR, Lawrence JB, Chess A (2007) A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics 8:39

    Article  PubMed Central  PubMed  Google Scholar 

  14. Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 33(6):717–726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Yang L, Lin C, Liu W, Zhang J, Ohgi KA, Grinstein JD, Dorrestein PC, Rosenfeld MG (2011) ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell 147(4):773–788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Sone M, Hayashi T, Tarui H, Agata K, Takeichi M, Nakagawa S (2007) The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J Cell Sci 120(Pt 15):2498–2506

    Article  CAS  PubMed  Google Scholar 

  17. Zheng R, Shen Z, Tripathi V, Xuan Z, Freier SM, Bennett CF, Prasanth SG, Prasanth KV (2010) Polypurine-repeat-containing RNAs: a novel class of long non-coding RNA in mammalian cells. J Cell Sci 123(Pt 21):3734–3744

    Article  CAS  PubMed  Google Scholar 

  18. Malatesta M, Fakan S, Fischer U (1999) The Sm core domain mediates targeting of U1 snRNP to subnuclear compartments involved in transcription and splicing. Exp Cell Res 249(2):189–198

    Article  CAS  PubMed  Google Scholar 

  19. Fox AH, Lam YW, Leung AK, Lyon CE, Andersen J, Mann M, Lamond AI (2002) Paraspeckles: a novel nuclear domain. Curr Biol 12(1):13–25

    Article  CAS  PubMed  Google Scholar 

  20. Prasanth KV, Prasanth SG, Xuan Z, Hearn S, Freier SM, Bennett CF, Zhang MQ, Spector DL (2005) Regulating gene expression through RNA nuclear retention. Cell 123(2):249–263

    Article  CAS  PubMed  Google Scholar 

  21. Fox AH, Bond CS, Lamond AI (2005) P54nrb forms a heterodimer with PSP1 that localizes to paraspeckles in an RNA-dependent manner. Mol Biol Cell 16(11):5304–5315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Sasaki YT, Ideue T, Sano M, Mituyama T, Hirose T (2009) MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc Natl Acad Sci U S A 106(8):2525–2530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Sunwoo H, Dinger ME, Wilusz JE, Amaral PP, Mattick JS, Spector DL (2009) MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res 19(3):347–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Hirose T, Virnicchi G, Tanigawa A, Naganuma T, Li R, Kimura H, Yokoi T, Nakagawa S, Benard M, Fox AH, Pierron G (2014) NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol Biol Cell 25(1):169–183

    Article  PubMed Central  PubMed  Google Scholar 

  25. Souquere S, Beauclair G, Harper F, Fox A, Pierron G (2010) Highly ordered spatial organization of the structural long noncoding NEAT1 RNAs within paraspeckle nuclear bodies. Mol Biol Cell 21(22):4020–4027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Binder M, Tourmente S, Roth J, Renaud M, Gehring WJ (1986) In situ hybridization at the electron microscope level: localization of transcripts on ultrathin sections of Lowicryl K4M-embedded tissue using biotinylated probes and protein A-gold complexes. J Cell Biol 102(5):1646–1653

    Article  CAS  PubMed  Google Scholar 

  27. Roth J, Bendayan M, Carlemalm E, Villiger W, Garavito M (1981) Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue. J Histochem Cytochem 29(5):663–671

    Article  CAS  PubMed  Google Scholar 

  28. Puvion-Dutilleul F, Puvion E (1989) Ultrastructural localization of viral DNA in thin sections of herpes simplex virus type 1 infected cells by in situ hybridization. Eur J Cell Biol 49(1):99–109

    CAS  PubMed  Google Scholar 

  29. Puvion-Dutilleul F, Puvion E (1990) Analysis by in situ hybridization and autoradiography of sites of replication and storage of single- and double-stranded adenovirus type 5 DNA in lytically infected HeLa cells. J Struct Biol 103(3):280–289

    Article  CAS  PubMed  Google Scholar 

  30. Visa N, Puvion-Dutilleul F, Harper F, Bachellerie JP, Puvion E (1993) Intranuclear distribution of poly(A) RNA determined by electron microscope in situ hybridization. Exp Cell Res 208(1):19–34

    Article  CAS  PubMed  Google Scholar 

  31. Pierron G, Puvion-Dutilleul F (1993) Mitotic segregation of the nucleolar ribosomal RNA in Physarum polycephalum. Exp Cell Res 208(2):509–517

    Article  CAS  PubMed  Google Scholar 

  32. Cmarko D, Ligasova A, Koberna K (2014) Tracking DNA and RNA sequences at high resolution. Methods Mol Biol 1117:343–366

    Article  PubMed  Google Scholar 

  33. Herpers B, Xanthakis D, Rabouille C (2010) ISH-IEM: a sensitive method to detect endogenous mRNAs at the ultrastructural level. Nat Protoc 5(4):678–687

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Archa Fox for the kind gift of PSPC1 antibody, Christian Lavialle for critical reading, and the CNRS and the Association pour la Recherche sur le Cancer (ARC) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard Pierron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Souquere, S., Pierron, G. (2015). Ultrastructural Analysis of Nuclear Bodies Using Electron Microscopy. In: Nakagawa, S., Hirose, T. (eds) Nuclear Bodies and Noncoding RNAs. Methods in Molecular Biology, vol 1262. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2253-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2253-6_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2252-9

  • Online ISBN: 978-1-4939-2253-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics