Skip to main content

Super-Resolution Imaging of Nuclear Bodies by STED Microscopy

  • Protocol
  • First Online:
Nuclear Bodies and Noncoding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1262))

Abstract

The sizes of nuclear bodies and other nuclear structures are normally no more than a few hundred nanometers. This size is below the resolution limit of light microscopy and thus requires electron microscopy for direct observation. Recent developments in super-resolution microscopy have extended the resolution of light microscopy to beyond 100 nm. Here, we describe a super-resolution technique, gated STED, for the analysis of the structure of nuclear bodies, with emphasis on the sample preparation and other technical tips that are important to obtain high-quality super-resolution images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch für Mikroskopische Anat 9:413–418. doi:10.1007/BF02956173

    Article  Google Scholar 

  2. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645. doi:10.1126/science.1127344

    Article  CAS  PubMed  Google Scholar 

  3. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–796. doi:10.1038/nmeth929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272. doi:10.1529/biophysj.106.091116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Egner A, Geisler C, von Middendorff C et al (2007) Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys J 93:3285–3290. doi:10.1529/biophysj.107.112201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Yildiz A, Forkey JN, McKinney SA et al (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300:2061–2065. doi:10.1126/science.1084398

    Article  CAS  PubMed  Google Scholar 

  7. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783. doi:10.1016/S0006-3495(02)75618-X

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Short Communication. J Microsc 198:82–87. doi:10.1046/j.1365-2818.2000.00710.x

    Article  CAS  PubMed  Google Scholar 

  9. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782. doi:10.1364/OL.19.000780

    Article  CAS  PubMed  Google Scholar 

  10. Vicidomini G, Moneron G, Han KY et al (2011) Sharper low-power STED nanoscopy by time gating. Nat Methods 8:571–573. doi:10.1038/nmeth.1624

    Article  CAS  PubMed  Google Scholar 

  11. Staudt T, Lang MC, Medda R et al (2007) 2,2′-thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy. Microsc Res Tech 70:1–9. doi:10.1002/jemt.20396

    Article  CAS  PubMed  Google Scholar 

  12. Donnert G, Keller J, Medda R et al (2006) Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci U S A 103:11440–11445. doi:10.1073/pnas.0604965103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Harke B, Keller J, Ullal CK et al (2008) Resolution scaling in STED microscopy. Opt Express 16:4154–4162. doi:10.1364/OE.16.004154

    Article  PubMed  Google Scholar 

  14. Nakata T, Hirokawa N (2003) Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. J Cell Biol 162:1045–1055. doi:10.1083/jcb.200302175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Tokunaga M, Imamoto N, Sakata-Sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5:159–161. doi:10.1038/nmeth1171 10.1038/nmeth1171

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Okada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Okada, Y., Nakagawa, S. (2015). Super-Resolution Imaging of Nuclear Bodies by STED Microscopy. In: Nakagawa, S., Hirose, T. (eds) Nuclear Bodies and Noncoding RNAs. Methods in Molecular Biology, vol 1262. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2253-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2253-6_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2252-9

  • Online ISBN: 978-1-4939-2253-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics