Skip to main content

Serotonin Disturbance in Mouse Models of Autism Spectrum Disorders

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 100))

Abstract

Autism spectrum disorders (ASD) are heterogeneous neurodevelopmental disorders characterized by abnormal social interactions, communicational deficits, and repetitive, stereotyped, or perseverative behaviors. To understand the pathophysiology of these disorders, it is essential to generate humanized rodent models for ASD that contain morphological abnormalities such as macrocephaly, epilepsy, and neurochemical abnormalities including hyperserotonemia, in addition to behavioral symptoms. The serotonin (5-HT; 5-hydroxytryptamine) signal plays an important role in modulating numerous behaviors such as mood, emotion, sleep, and appetite. Abnormal 5-HT signals, including hyperserotonemia or altered synthesis in the brain, and the effectiveness of 5-HT-related drug treatments for ASD symptoms, have implicated 5-HT in ASDs for many decades. While this circumstantial evidence has been accumulating, a comprehensive understanding of a causative role or mechanism of action of 5-HT in ASD is still far off. Here, we summarize 5-HT features in ASD and rodent models of the disorder. Serotonergic disturbances in models for ASD will provide a clue to understanding ASD.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Schain RJ, Freedman DX (1961) Studies on 5-hydroxyindole metabolism in autistic and other mentally retarded children. J Pediatr 58:315–320

    CAS  PubMed  Google Scholar 

  2. Lam KSL, Aman MG, Arnold LE (2006) Neurochemical correlates of autistic disorder: a review of the literature. Res Dev Disabil 27:254–289

    PubMed  Google Scholar 

  3. Tuchman R, Cuccaro M (2011) Epilepsy and autism: neurodevelopmental perspective. Curr Neurol Neurosci Rep 11:428–434

    PubMed  Google Scholar 

  4. Fombonne E, Rogé B, Claverie J, Courty S, Frémolle J (1999) Microcephaly and macrocephaly in autism. J Autism Dev Disord 29:113–119

    CAS  PubMed  Google Scholar 

  5. Lainhart JE (2003) Increased rate of head growth during infancy in autism. JAMA 290:393–394

    PubMed  Google Scholar 

  6. Wade PR et al (1996) Localization and function of a 5-HT transporter in crypt epithelia of the gastrointestinal tract. J Neurosci 16:2352–2364

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Launay G, Costa JL, Da Prada M, Launay JM (1994) Estimation of rate constants for serotonin uptake and compartmentation in normal human platelets. Am J Physiol 266:R1061–R1075

    CAS  PubMed  Google Scholar 

  8. Anderson GM et al (1987) Whole blood serotonin in autistic and normal subjects. J Child Psychol Psychiatry 28:885–900

    CAS  PubMed  Google Scholar 

  9. Spivak B et al (2004) Low platelet-poor plasma levels of serotonin in adult autistic patients. Neuropsychobiology 50:157–160

    CAS  PubMed  Google Scholar 

  10. Connors SL et al (2006) Plasma serotonin in autism. Pediatr Neurol 35:182–186

    PubMed  Google Scholar 

  11. Anderson GM, Hertzig ME, McBride PA (2011) Brief report: Platelet-poor plasma serotonin in autism. J Autism Dev Disord. doi:10.1007/s10803-011-1371-1

    PubMed  Google Scholar 

  12. Anderson GM (2007) Measurement of plasma serotonin in autism. Pediatr Neurol 36:138, author reply 138–139

    PubMed  Google Scholar 

  13. Belendiuk K, Belendiuk GW, Freedman DX (1980) Blood monoamine metabolism in Huntington’s disease. Arch Gen Psychiatry 37:325–332

    CAS  PubMed  Google Scholar 

  14. Hanley HG, Stahl SM, Freedman DX (1977) Hyperserotonemia and amine metabolites in autistic and retarded children. Arch Gen Psychiatry 34:521–531

    CAS  PubMed  Google Scholar 

  15. Pare CM, Sandler M, Stacey RS (1960) 5-Hydroxyindoles in mental deficiency. J Neurol Neurosurg Psychiatry 23:341–346

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Partington MW, Tu JB, Wong CY (1973) Blood serotonin levels in severe mental retardation. Dev Med Child Neurol 15:616–627

    CAS  PubMed  Google Scholar 

  17. Freedman DX, Belendiuk K, Belendiuk GW, Crayton JW (1981) Blood tryptophan metabolism in chronic schizophrenics. Arch Gen Psychiatry 38:655–659

    CAS  PubMed  Google Scholar 

  18. Mück-Seler D, Pivac N, Jakovljević M, Brzović Z (1999) Platelet serotonin, plasma cortisol, and dexamethasone suppression test in schizophrenic patients. Biol Psychiatry 45:1433–1439

    PubMed  Google Scholar 

  19. Mück-Seler D, Jakovljević M, Deanović Z (1988) Time course of schizophrenia and platelet 5-HT level. Biol Psychiatry 23:243–251

    PubMed  Google Scholar 

  20. Mück-Seler D, Jakovljević M, Deanović Z (1991) Platelet serotonin in subtypes of schizophrenia and unipolar depression. Psychiatry Res 38:105–113

    PubMed  Google Scholar 

  21. Jakovljević M et al (1997) Seasonal influence on platelet 5-HT levels in patients with recurrent major depression and schizophrenia. Biol Psychiatry 41:1028–1034

    PubMed  Google Scholar 

  22. Croonenberghs J, Verkerk R, Scharpe S, Deboutte D, Maes M (2005) Serotonergic disturbances in autistic disorder: L-5-hydroxytryptophan administration to autistic youngsters increases the blood concentrations of serotonin in patients but not in controls. Life Sci 76:2171–2183

    CAS  PubMed  Google Scholar 

  23. Marazziti D et al (2000) Increased density of the platelet serotonin transporter in autism. Pharmacopsychiatry 33:165–168

    CAS  PubMed  Google Scholar 

  24. Cook EH, Leventhal BL (1996) The serotonin system in autism. Curr Opin Pediatr 8:348–354

    CAS  PubMed  Google Scholar 

  25. Anderson GM (1987) Monoamines in autism: an update of neurochemical research on a pervasive developmental disorder. Med Biol 65:67–74

    CAS  PubMed  Google Scholar 

  26. Murphy DL, Lesch K-P (2008) Targeting the murine serotonin transporter: insights into human neurobiology. Nat Rev Neurosci 9:85–96

    CAS  PubMed  Google Scholar 

  27. Greenberg BD et al (1999) Genetic variation in the serotonin transporter promoter region affects serotonin uptake in human blood platelets. Am J Med Genet 88:83–87

    CAS  PubMed  Google Scholar 

  28. Meltzer HY, Arora RC (1988) Genetic control of serotonin uptake in blood platelets: a twin study. Psychiatry Res 24:263–269

    CAS  PubMed  Google Scholar 

  29. Lesch KP et al (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274:1527–1531

    CAS  PubMed  Google Scholar 

  30. Tordjman S et al (2001) Role of the serotonin transporter gene in the behavioral expression of autism. Mol Psychiatry 6:434–439

    CAS  PubMed  Google Scholar 

  31. Anderson GM et al (2002) Serotonin transporter promoter variants in autism: functional effects and relationship to platelet hyperserotonemia. Mol Psychiatry 7:831–836

    CAS  PubMed  Google Scholar 

  32. Chandana SR et al (2005) Significance of abnormalities in developmental trajectory and asymmetry of cortical serotonin synthesis in autism. Int J Dev Neurosci 23:171–182

    CAS  PubMed  Google Scholar 

  33. Chugani DC et al (1999) Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 45:287–295

    CAS  PubMed  Google Scholar 

  34. Chugani DC (2002) Role of altered brain serotonin mechanisms in autism. Mol Psychiatry 7(Suppl 2):S16–S17

    PubMed  Google Scholar 

  35. Osterheld-Haas MC, Hornung JP (1996) Laminar development of the mouse barrel cortex: effects of neurotoxins against monoamines. Exp Brain Res 110:183–195

    CAS  PubMed  Google Scholar 

  36. Blue ME, Erzurumlu RS, Jhaveri S (1991) A comparison of pattern formation by thalamocortical and serotonergic afferents in the rat barrel field cortex. Cereb Cortex 1991(1):380–389

    Google Scholar 

  37. Kahne D et al (2002) Behavioral and magnetic resonance spectroscopic studies in the rat hyperserotonemic model of autism. Physiol Behav 75:403–410

    CAS  PubMed  Google Scholar 

  38. McNamara IM, Borella AW, Bialowas LA, Whitaker-Azmitia PM (2008) Further studies in the developmental hyperserotonemia model (DHS) of autism: social, behavioral and peptide changes. Brain Res 1189:203–214

    CAS  PubMed  Google Scholar 

  39. Strömland K, Nordin V, Miller M, Akerström B, Gillberg C (1994) Autism in thalidomide embryopathy: a population study. Dev Med Child Neurol 36:351–356

    PubMed  Google Scholar 

  40. Williams G et al (2001) Fetal valproate syndrome and autism: additional evidence of an association. Dev Med Child Neurol 43:202–206

    CAS  PubMed  Google Scholar 

  41. Moore SJ et al (2000) A clinical study of 57 children with fetal anticonvulsant syndromes. J Med Genet 37:489–497

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Robert E (1983) Valproic acid in pregnancy—association with spina bifida: a preliminary report. Clin Pediatr (Phila) 22:336

    CAS  Google Scholar 

  43. Dufour-Rainfray D et al (2010) Behavior and serotonergic disorders in rats exposed prenatally to valproate: a model for autism. Neurosci Lett 470:55–59

    CAS  PubMed  Google Scholar 

  44. Kuwagata M, Ogawa T, Shioda S, Nagata T (2009) Observation of fetal brain in a rat valproate-induced autism model: a developmental neurotoxicity study. Int J Dev Neurosci 27:399–405

    CAS  PubMed  Google Scholar 

  45. Miyazaki K, Narita N, Narita M (2005) Maternal administration of thalidomide or valproic acid causes abnormal serotonergic neurons in the offspring: implication for pathogenesis of autism. Int J Dev Neurosci 23:287–297

    CAS  PubMed  Google Scholar 

  46. Tsujino N et al (2007) Abnormality of circadian rhythm accompanied by an increase in frontal cortex serotonin in animal model of autism. Neurosci Res 57:289–295

    CAS  PubMed  Google Scholar 

  47. Narita N et al (2002) Increased monoamine concentration in the brain and blood of fetal thalidomide- and valproic acid-exposed rat: putative animal models for autism. Pediatr Res 52:576–579

    CAS  PubMed  Google Scholar 

  48. Miller MT et al (2005) Autism associated with conditions characterized by developmental errors in early embryogenesis: a mini review. Int J Dev Neurosci 23:201–219

    PubMed  Google Scholar 

  49. Van Donkelaar EL et al (2011) Mechanism of acute tryptophan depletion: is it only serotonin? Mol Psychiatry. doi:10.1038/mp.2011.9

    PubMed  Google Scholar 

  50. Van der Plasse G (2013) Converging evidence for central 5-HT effects in acute tryptophan depletion? Mol Psychiatry 18:271–272

    PubMed  Google Scholar 

  51. Lytle LD, Messing RB, Fisher L, Phebus L (1975) Effects of long-term corn consumption on brain serotonin and the response to electric shock. Science 190:692–694

    CAS  PubMed  Google Scholar 

  52. Walters JK, Davis M, Sheard MH (1979) Tryptophan-free diet: effects on the acoustic startle reflex in rats. Psychopharmacology (Berl) 62:103–109

    CAS  Google Scholar 

  53. Gibbons JL, Barr GA, Bridger WH, Leibowitz SF (1979) Manipulations of dietary tryptophan: effects on mouse killing and brain serotonin in the rat. Brain Res 169:139–153

    CAS  PubMed  Google Scholar 

  54. McDougle CJ et al (1993) Acute tryptophan depletion in autistic disorder: a controlled case study. Biol Psychiatry 33:547–550

    CAS  PubMed  Google Scholar 

  55. D’Eufemia P et al (1995) Low serum tryptophan to large neutral amino acids ratio in idiopathic infantile autism. Biomed Pharmacother 49:288–292

    PubMed  Google Scholar 

  56. Freeman BJ, Ritvo ER, Yokota A, Ritvo A (1986) A scale for rating symptoms of patients with the syndrome of autism in real life settings. J Am Acad Child Psychiatry 25:130–136

    CAS  PubMed  Google Scholar 

  57. McDougle CJ et al (1996) Effects of tryptophan depletion in drug-free adults with autistic disorder. Arch Gen Psychiatry 53:993–1000

    CAS  PubMed  Google Scholar 

  58. Attenburrow M-J et al (2003) Acute administration of nutritionally sourced tryptophan increases fear recognition. Psychopharmacology (Berl) 169:104–107

    CAS  Google Scholar 

  59. Koopmans SJ et al (2006) Effects of supplemental L-tryptophan on serotonin, cortisol, intestinal integrity, and behavior in weanling piglets. J Anim Sci 84:963–971

    CAS  PubMed  Google Scholar 

  60. Fadda F, Cocco S, Stancampiano R (2000) A physiological method to selectively decrease brain serotonin release. Brain Res Brain Res Protoc 5:219–222

    CAS  PubMed  Google Scholar 

  61. Van Donkelaar EL et al (2009) Acute tryptophan depletion in C57BL/6 mice does not induce central serotonin reduction or affective behavioural changes. Neurochem Int. doi:10.1016/j.neuint.2009.08.010

    PubMed  Google Scholar 

  62. Browne CA, Clarke G, Dinan TG, Cryan JF (2012) An effective dietary method for chronic tryptophan depletion in two mouse strains illuminates a role for 5-HT in nesting behaviour. Neuropharmacology 62:1903–1915

    CAS  PubMed  Google Scholar 

  63. Biskup CS et al (2012) Effects of acute tryptophan depletion on brain serotonin function and concentrations of dopamine and norepinephrine in C57BL/6J and BALB/cJ mice. PLoS One 7:e35916

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Uchida S, Umeeda H, Kitamoto A, Masushige S, Kida S (2007) Chronic reduction in dietary tryptophan leads to a selective impairment of contextual fear memory in mice. Brain Res 1149:149–156

    CAS  PubMed  Google Scholar 

  65. Uchida S et al (2005) Chronic reduction in dietary tryptophan leads to changes in the emotional response to stress in mice. J Nutr Sci Vitaminol (Tokyo) 51:175–181

    CAS  Google Scholar 

  66. Abrahams BS, Geschwind DH (2008) Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9:341–355

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Jamain S et al (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34:27–29

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Jamain S et al (2008) Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc Natl Acad Sci U S A 105:1710–1715

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Etherton M et al (2011) Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. Proc Natl Acad Sci U S A 108:13764–13769

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Tabuchi K et al (2007) A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318:71–76

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Nakatani J et al (2009) Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell 137:1235–1246

    PubMed Central  PubMed  Google Scholar 

  72. Lacaria M, Spencer C, Gu W, Paylor R, Lupski JR (2012) Enriched rearing improves behavioral responses of an animal model for CNV-based autistic-like traits. Hum Mol Genet 21:3083–3096

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Horev G et al (2011) Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism. Proc Natl Acad Sci U S A 108:17076–17081

    PubMed Central  PubMed  Google Scholar 

  74. Walz K et al (2003) Modeling del(17)(p11.2p11.2) and dup(17)(p11.2p11.2) contiguous gene syndromes by chromosome engineering in mice: phenotypic consequences of gene dosage imbalance. Mol Cell Biol 23:3646–3655

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Molina J et al (2008) Abnormal social behaviors and altered gene expression rates in a mouse model for Potocki-Lupski syndrome. Hum Mol Genet 17:2486–2495

    CAS  PubMed  Google Scholar 

  76. Ellegood J, Babineau BA, Henkelman RM, Lerch JP, Crawley JN (2013) Neuroanatomical analysis of the BTBR mouse model of autism using magnetic resonance imaging and diffusion tensor imaging. Neuroimage 70:288–300

    PubMed Central  PubMed  Google Scholar 

  77. Corley MJ, Meyza KZ, Blanchard DC, Blanchard RJ (2012) Reduced sulfate plasma concentrations in the BTBR T+tf/J mouse model of autism. Physiol Behav 107:663–665

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Mercier F, Kwon YC, Douet V (2012) Hippocampus/amygdala alterations, loss of heparan sulfates, fractones and ventricle wall reduction in adult BTBR T+tf/J mice, animal model for autism. Neurosci Lett 506:208–213

    CAS  PubMed  Google Scholar 

  79. Blanchard DC et al (2012) BTBR T+tf/J mice: autism-relevant behaviors and reduced fractone-associated heparan sulfate. Neurosci Biobehav Rev 36:285–296

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Moy SS et al (2007) Mouse behavioral tasks relevant to autism: phenotypes of 10 inbred strains. Behav Brain Res 176:4–20

    PubMed Central  PubMed  Google Scholar 

  81. Brodkin ES, Hagemann A, Nemetski SM, Silver LM (2004) Social approach-avoidance behavior of inbred mouse strains towards DBA/2 mice. Brain Res 1002:151–157

    CAS  PubMed  Google Scholar 

  82. Panksepp JB et al (2007) Affiliative behavior, ultrasonic communication and social reward are influenced by genetic variation in adolescent mice. PLoS One 2:e351

    PubMed Central  PubMed  Google Scholar 

  83. Sankoorikal GMV, Kaercher KA, Boon CJ, Lee JK, Brodkin ES (2006) A mouse model system for genetic analysis of sociability: C57BL/6J versus BALB/cJ inbred mouse strains. Biol Psychiatry 59:415–423

    CAS  PubMed  Google Scholar 

  84. Zhang X, Beaulieu J-M, Sotnikova TD, Gainetdinov RR, Caron MG (2004) Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305:217

    CAS  PubMed  Google Scholar 

  85. Brodkin ES (2007) BALB/c mice: low sociability and other phenotypes that may be relevant to autism. Behav Brain Res 176:53–65

    CAS  PubMed  Google Scholar 

  86. Coon H et al (2005) Possible association between autism and variants in the brain-expressed tryptophan hydroxylase gene (TPH2). Am J Med Genet B Neuropsychiatr Genet 135B:42–46

    PubMed  Google Scholar 

  87. Roderick TH, Wimer RE, Wimer CC, Schwartzkroin PA (1973) Genetic and phenotypic variation in weight of brain and spinal cord between inbred strains of mice. Brain Res 64:345–353

    CAS  PubMed  Google Scholar 

  88. Fairless AH et al (2012) Sociability and brain development in BALB/cJ and C57BL/6J mice. Behav Brain Res 228:299–310

    PubMed Central  PubMed  Google Scholar 

  89. Silverman JL, Yang M, Lord C, Crawley JN (2010) Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci 11:490–502

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Nadler JJ et al (2004) Automated apparatus for quantitation of social approach behaviors in mice. Genes Brain Behav 3:303–314

    CAS  PubMed  Google Scholar 

  91. Portfors CV (2007) Types and functions of ultrasonic vocalizations in laboratory rats and mice. J Am Assoc Lab Anim Sci 46:28–34

    CAS  PubMed  Google Scholar 

  92. Scattoni ML, Gandhy SU, Ricceri L, Crawley JN (2008) Unusual repertoire of vocalizations in the BTBR T+tf/J mouse model of autism. PLoS One 3:e3067

    PubMed Central  PubMed  Google Scholar 

  93. Smolinsky AN, Bergner CL, LaPorte JL, Kalueff AV (2009) Analysis of grooming behavior and its utility in studying animal stress, anxiety, and depression. In: Gould TD (ed) Mood anxiety related phenotypes mice, vol 42. Humana Press, New York, pp 21–36

    Google Scholar 

  94. Hollander E et al (2012) A double-blind placebo-controlled trial of fluoxetine for repetitive behaviors and global severity in adult autism spectrum disorders. Am J Psychiatry 169:292–299

    PubMed  Google Scholar 

  95. Schneider T, Turczak J, Przewłocki R (2006) Environmental enrichment reverses behavioral alterations in rats prenatally exposed to valproic acid: issues for a therapeutic approach in autism. Neuropsychopharmacology 31:36–46

    CAS  PubMed  Google Scholar 

  96. DeLong GR, Ritch CR, Burch S (2002) Fluoxetine response in children with autistic spectrum disorders: correlation with familial major affective disorder and intellectual achievement. Dev Med Child Neurol 44:652–659

    PubMed  Google Scholar 

  97. Shmelkov SV et al (2010) Slitrk5 deficiency impairs corticostriatal circuitry and leads to obsessive-compulsive-like behaviors in mice. Nat Med 16:598–602, 1p following 602

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Welch JM et al (2007) Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature 448:894–900

    CAS  PubMed Central  PubMed  Google Scholar 

  99. McFarlane HG et al (2008) Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav 7:152–163

    CAS  PubMed  Google Scholar 

  100. Weissbrod A et al (2013) Automated long-term tracking and social behavioural phenotyping of animal colonies within a semi-natural environment. Nat Commun 4:2018

    PubMed  Google Scholar 

  101. Peñagarikano O et al (2011) Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 147:235–246

    PubMed Central  PubMed  Google Scholar 

  102. Bader PL et al (2011) Mouse model of Timothy syndrome recapitulates triad of autistic traits. Proc Natl Acad Sci U S A 108:15432–15437

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Martins GJ, Shahrokh M, Powell EM (2011) Genetic disruption of Met signaling impairs GABAergic striatal development and cognition. Neuroscience 176:199–209

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Sala M et al (2011) Pharmacologic rescue of impaired cognitive flexibility, social deficits, increased aggression, and seizure susceptibility in oxytocin receptor null mice: a neurobehavioral model of autism. Biol Psychiatry 69:875–882

    CAS  PubMed  Google Scholar 

  105. Tsai PT et al (2012) Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488:647–651

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858

    PubMed Central  PubMed  Google Scholar 

  107. Tamada K et al (2010) Decreased exploratory activity in a mouse model of 15q duplication syndrome; implications for disturbance of serotonin signaling. PLoS One 5:e15126

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Holmes A, Murphy DL, Crawley JN (2002) Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology (Berl) 161:160–167

    CAS  Google Scholar 

  109. Lira A et al (2003) Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice. Biol Psychiatry 54:960–971

    CAS  PubMed  Google Scholar 

  110. Zhao S et al (2006) Insertion mutation at the C-terminus of the serotonin transporter disrupts brain serotonin function and emotion-related behaviors in mice. Neuroscience 140:321–334

    CAS  PubMed  Google Scholar 

  111. Kalueff AV, Fox MA, Gallagher PS, Murphy DL (2007) Hypolocomotion, anxiety and serotonin syndrome-like behavior contribute to the complex phenotype of serotonin transporter knockout mice. Genes Brain Behav 6:389–400

    CAS  PubMed  Google Scholar 

  112. Fabre V et al (2000) Altered expression and functions of serotonin 5-HT1A and 5-HT1B receptors in knock-out mice lacking the 5-HT transporter. Eur J Neurosci 12:2299–2310

    CAS  PubMed  Google Scholar 

  113. Whitaker-Azmitia PM (2005) Behavioral and cellular consequences of increasing serotonergic activity during brain development: a role in autism? Int J Dev Neurosci 23:75–83

    CAS  PubMed  Google Scholar 

  114. Farook MF et al (2012) Altered serotonin, dopamine and norepinephrine levels in 15q duplication and Angelman syndrome mouse models. PLoS One 7:e43030

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Dougherty JD et al (2013) The disruption of Celf6, a gene identified by translational profiling of serotonergic neurons, results in autism-related behaviors. J Neurosci 33:2732–2753

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Kane MJ et al (2012) Mice genetically depleted of brain serotonin display social impairments, communication deficits and repetitive behaviors: possible relevance to autism. PLoS One 7:e48975

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Cheh MA et al (2006) En2 knockout mice display neurobehavioral and neurochemical alterations relevant to autism spectrum disorder. Brain Res 1116:166–176

    CAS  PubMed  Google Scholar 

  118. Hendricks TJ et al (2003) Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 37:233–247

    CAS  PubMed  Google Scholar 

  119. Kim D-K et al (2005) Altered serotonin synthesis, turnover and dynamic regulation in multiple brain regions of mice lacking the serotonin transporter. Neuropharmacology 49:798–810

    CAS  PubMed  Google Scholar 

  120. Veenstra-Vanderweele J et al (2012) Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior. Proc Natl Acad Sci U S A 109:5469–5474

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Ide S, Itoh M, Goto Y (2005) Defect in normal developmental increase of the brain biogenic amine concentrations in the mecp2-null mouse. Neurosci Lett 386:14–17

    CAS  PubMed  Google Scholar 

  122. Panayotis N, Ghata A, Villard L, Roux J-C (2011) Biogenic amines and their metabolites are differentially affected in the Mecp2-deficient mouse brain. BMC Neurosci 12:47

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Samaco RC et al (2009) Loss of MeCP2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities. Proc Natl Acad Sci U S A 106:21966–21971

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Narboux-Nême N et al (2013) Postnatal growth defects in mice with constitutive depletion of central serotonin. ACS Chem Neurosci 4:171–181

    PubMed Central  PubMed  Google Scholar 

  125. Gould GG et al (2011) Density and function of central serotonin (5-HT) transporters, 5-HT1A and 5-HT2A receptors, and effects of their targeting on BTBR T+tf/J mouse social behavior. J Neurochem 116:291–303

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Wersinger SR, Ginns EI, O’Carroll A-M, Lolait SJ, Young WS III (2002) Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol Psychiatry 7:975–984

    CAS  PubMed  Google Scholar 

  127. Scattoni ML et al (2008) Reduced ultrasonic vocalizations in vasopressin 1b knockout mice. Behav Brain Res 187:371–378

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Scattoni ML, Ricceri L, Crawley JN (2011) Unusual repertoire of vocalizations in adult BTBR T+tf/J mice during three types of social encounters. Genes Brain Behav 10:44–56

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Pearson BL et al (2011) Motor and cognitive stereotypies in the BTBR T+tf/J mouse model of autism. Genes Brain Behav 10:228–235

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Takayanagi Y et al (2010) Impairment of social and emotional behaviors in Cadm1-knockout mice. Biochem Biophys Res Commun 396:703–708

    CAS  PubMed  Google Scholar 

  131. Fujita E, Tanabe Y, Imhof BA, Momoi MY, Momoi T (2012) Cadm1-expressing synapses on Purkinje cell dendrites are involved in mouse ultrasonic vocalization activity. PLoS One 7:e30151

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Sadakata T et al (2007) Autistic-like phenotypes in Cadps2-knockout mice and aberrant CADPS2 splicing in autistic patients. J Clin Invest 117:931–943

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Sadakata T, Shinoda Y, Oka M, Sekine Y, Furuichi T (2013) Autistic-like behavioral phenotypes in a mouse model with copy number variation of the CAPS2/CADPS2 gene. FEBS Lett 587:54–59

    CAS  PubMed  Google Scholar 

  134. Lopatina O, Inzhutova A, Salmina AB, Higashida H (2012) The roles of oxytocin and CD38 in social or parental behaviors. Front Neurosci 6:182

    PubMed Central  PubMed  Google Scholar 

  135. Jin D et al (2007) CD38 is critical for social behaviour by regulating oxytocin secretion. Nature 446:41–45

    CAS  PubMed  Google Scholar 

  136. Liu H-X et al (2008) Locomotor activity, ultrasonic vocalization and oxytocin levels in infant CD38 knockout mice. Neurosci Lett 448:67–70

    CAS  PubMed  Google Scholar 

  137. Wang I-TJ et al (2012) Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice. Proc Natl Acad Sci U S A 109:21516–21521

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Brielmaier J et al (2012) Autism-relevant social abnormalities and cognitive deficits in engrailed-2 knockout mice. PLoS One 7:e40914

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Irie F, Badie-Mahdavi H, Yamaguchi Y (2012) Autism-like socio-communicative deficits and stereotypies in mice lacking heparan sulfate. Proc Natl Acad Sci U S A 109:5052–5056

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Blundell J et al (2010) Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior. J Neurosci 30:2115–2129

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Chadman KK et al (2008) Minimal aberrant behavioral phenotypes of neuroligin-3 R451C knockin mice. Autism Res 1:147–158

    PubMed Central  PubMed  Google Scholar 

  142. Radyushkin K et al (2009) Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit. Genes Brain Behav 8:416–425

    CAS  PubMed  Google Scholar 

  143. Fischer J, Hammerschmidt K (2011) Ultrasonic vocalizations in mouse models for speech and socio-cognitive disorders: insights into the evolution of vocal communication. Genes Brain Behav 10:17–27

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Ferguson JN et al (2000) Social amnesia in mice lacking the oxytocin gene. Nat Genet 25:284–288

    CAS  PubMed  Google Scholar 

  145. Winslow JT et al (2000) Infant vocalization, adult aggression, and fear behavior of an oxytocin null mutant mouse. Horm Behav 37:145–155

    CAS  PubMed  Google Scholar 

  146. Pedersen CA, Vadlamudi SV, Boccia ML, Amico JA (2006) Maternal behavior deficits in nulliparous oxytocin knockout mice. Genes Brain Behav 5:274–281

    CAS  PubMed  Google Scholar 

  147. Pobbe RLH, Pearson BL, Blanchard DC, Blanchard RJ (2012) Oxytocin receptor and Mecp2 308/Y knockout mice exhibit altered expression of autism-related social behaviors. Physiol Behav 107:641–648

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Page DT, Kuti OJ, Prestia C, Sur M (2009) Haploinsufficiency for Pten and Serotonin transporter cooperatively influences brain size and social behavior. Proc Natl Acad Sci U S A 106:1989–1994

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Kwon C-H et al (2006) Pten regulates neuronal arborization and social interaction in mice. Neuron 50:377–388

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Napoli E et al (2012) Mitochondrial dysfunction in Pten haplo-insufficient mice with social deficits and repetitive behavior: interplay between Pten and p53. PLoS One 7:e42504

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Han S et al (2012) Autistic-like behaviour in Scn1a+/− mice and rescue by enhanced GABA-mediated neurotransmission. Nature 489:385–390

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Silverman JL et al (2011) Sociability and motor functions in Shank1 mutant mice. Brain Res 1380:120–137

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Wöhr M, Roullet FI, Hung AY, Sheng M, Crawley JN (2011) Communication impairments in mice lacking Shank1: reduced levels of ultrasonic vocalizations and scent marking behavior. PLoS One 6:e20631

    PubMed Central  PubMed  Google Scholar 

  154. Won H et al (2012) Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 486:261–265

    CAS  PubMed  Google Scholar 

  155. Schmeisser MJ et al (2012) Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 486:256–260

    CAS  PubMed  Google Scholar 

  156. Peça J et al (2011) Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472:437–442

    PubMed Central  PubMed  Google Scholar 

  157. Bozdagi O et al (2010) Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism 1:15

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Moy SS et al (2009) Social approach in genetically engineered mouse lines relevant to autism. Genes Brain Behav 8:129–142

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Goorden SMI, van Woerden GM, van der Weerd L, Cheadle JP, Elgersma Y (2007) Cognitive deficits in Tsc1+/− mice in the absence of cerebral lesions and seizures. Ann Neurol 62:648–655

    PubMed  Google Scholar 

  160. Sato A et al (2012) Rapamycin reverses impaired social interaction in mouse models of tuberous sclerosis complex. Nat Commun 3:1292

    PubMed Central  PubMed  Google Scholar 

  161. Ehninger D et al (2008) Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat Med 14:843–848

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Reith RM et al (2013) Loss of Tsc2 in Purkinje cells is associated with autistic-like behavior in a mouse model of tuberous sclerosis complex. Neurobiol Dis 51:93–103

    CAS  PubMed  Google Scholar 

  163. Calfa G, Percy AK, Pozzo-Miller L (2011) Experimental models of Rett syndrome based on Mecp2 dysfunction. Exp Biol Med (Maywood) 236:3–19

    CAS  Google Scholar 

  164. Chao H-T et al (2010) Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468:263–269

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Samaco RC et al (2012) Crh and Oprm1 mediate anxiety-related behavior and social approach in a mouse model of MECP2 duplication syndrome. Nat Genet 44:206–211

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Samaco RC et al (2013) Female Mecp2(+/−) mice display robust behavioral deficits on two different genetic backgrounds providing a framework for pre-clinical studies. Hum Mol Genet 22:96–109

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Budimirovic DB, Kaufmann WE (2011) What can we learn about autism from studying fragile X syndrome? Dev Neurosci 33:379–394

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Dolan BM et al (2013) Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by the small-molecule PAK inhibitor FRAX486. Proc Natl Acad Sci U S A 110:5671–5676

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Bhattacharya A et al (2012) Genetic removal of p70 S6 kinase 1 corrects molecular, synaptic, and behavioral phenotypes in fragile X syndrome mice. Neuron 76:325–337

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Rotschafer SE, Trujillo MS, Dansie LE, Ethell IM, Razak KA (2011) Minocycline treatment reverses ultrasonic vocalization production deficit in a mouse model of Fragile X Syndrome. Brain Res. doi:10.1016/j.brainres.2011.12.041

    PubMed  Google Scholar 

  171. Pietropaolo S, Guilleminot A, Martin B, D’Amato FR, Crusio WE (2011) Genetic-background modulation of core and variable autistic-like symptoms in Fmr1 knock-out mice. PLoS One 6:e17073

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Takayanagi Y et al (2005) Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proc Natl Acad Sci U S A 102:16096–16101

    Google Scholar 

Download references

Acknowledgments

We thank Daniel DeWoskin for comments on the manuscript. This work was supported in part by KAKENHI, Japan Society of Promotion of Science and Ministry of Education, Culture, Sports, Science, and Technology (KT and TT), Strategic International Cooperative Program (SICP) and CREST, Japan Science and Technology Agency (TT), Intramural Research Grant (24-12) for Neurological and Psychiatric Disorders of NCNP (TT), and the Takeda Science Foundation (TT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Takumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tamada, K., Takumi, T. (2015). Serotonin Disturbance in Mouse Models of Autism Spectrum Disorders. In: Roubertoux, P. (eds) Organism Models of Autism Spectrum Disorders. Neuromethods, vol 100. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2250-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2250-5_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2249-9

  • Online ISBN: 978-1-4939-2250-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics