Skip to main content

In Vivo Imaging in Mice

  • Protocol
  • First Online:
  • 1286 Accesses

Part of the book series: Neuromethods ((NM,volume 100))

Abstract

Imaging modalities for small rodents are mostly derived from clinical imaging such as ultrasound (US) imaging, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and single photon emission computed tomography (SPECT) but require some technical adaptations due mainly to the small size of mice. Optical imaging (bioluminescence, BLI, and fluorescence, FLI) is an additional in vivo technique only performed on small animals, originating from in vitro studies. The objective of this chapter is to provide an overview of these small-animal imaging modalities, their physical basis, and their main applications in mice.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hounsfield GN (1973) Computerized transverse axial scanning (tomography): Part I. Description of system. Br J Radiol 68(815):166–172

    Google Scholar 

  2. Cormack AM (1973) Reconstruction of densities from their projections, with applications in radiological physics. Phys Med Biol 18(2):195–207

    CAS  PubMed  Google Scholar 

  3. Edler I, Hertz CH (1954) The use of ultrasonic reflectoscope for the continuous recording of the movements of heart walls. Clin Physiol Funct Imaging 24(3):118–136

    Google Scholar 

  4. Edler I (1991) Early echocardiography. Ultrasound Med Biol 17(5):425–431

    CAS  PubMed  Google Scholar 

  5. Lauterbur PC (1973) Image formation by induced local interactions. Examples employing nuclear magnetic resonance. Clin Orthop Relat Res 244:3–6

    Google Scholar 

  6. Mansfield P, Grannell PK (1973) NMR “diffraction” in solids? J Phys C Solid State Phys 6(22):L422–L426

    CAS  Google Scholar 

  7. Grannell PK, Mansfield P (1975) Microscopy in vivo by nuclear magnetic resonance. Phys Med Biol 20(3):477–482

    CAS  PubMed  Google Scholar 

  8. Kuhl DE, Edwards RQ (1963) Image separation radioisotope scanning. Radiology 80(4):653–662

    Google Scholar 

  9. Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA (1975) A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology 114(1):89–98

    CAS  PubMed  Google Scholar 

  10. Acton PD. Animal imaging equipment: recent advances. J Nucl Med [Internet]. 2006 [cited 2012 Sep 13]; Available from: http://www.highbeam.com/doc/1P3-1182706001.html

  11. Koba W, Kim K, Lipton ML, Jelicks L, Das B, Herbst L et al (2011) Imaging devices for use in small animals. Semin Nucl Med 41(3):151–165

    PubMed  Google Scholar 

  12. Kujoory MA, Hillman BJ, Barrett HH (1980) High-resolution computed tomography of the normal rat nephrogram. Invest Radiol 15(2):148–154

    CAS  PubMed  Google Scholar 

  13. Sato T, Ikeda O, Yamakoshi Y, Tsubouchi M (1981) X-ray tomography for microstructural objects. Appl Opt 20(22):3880–3883

    CAS  PubMed  Google Scholar 

  14. Burstein P, Bjorkholm PJ, Chase RC, Seguin FH (1984) The largest and smallest X-ray computed tomography systems. Nucl Instr Meth Phys Res 221(1):207–212

    Google Scholar 

  15. Flannery BP, Deckman HW, Roberge WG, D’amico KL (1987) Three-dimensional X-ray microtomography. Science 237(4821):1439–1444

    CAS  PubMed  Google Scholar 

  16. Feldkamp LA, Goldstein SA, Parfitt MA, Jesion G, Kleerekoper M, Feldkamp LA et al (1989) The direct examination of three‐dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4(1):3–11

    CAS  PubMed  Google Scholar 

  17. Holdsworth DW, Drangova M, Fenster A (1993) A high-resolution XRII-based quantitative volume CT scanner. Med Phys 20(2 Pt 1):449–462

    CAS  PubMed  Google Scholar 

  18. Boone JM, Alexander GM, Seibert JA (1993) A fluoroscopy-based computed tomography scanner for small specimen research. Invest Radiol 28(6):539–544

    CAS  PubMed  Google Scholar 

  19. Machin K, Webb S (1994) Cone-beam X-ray microtomography of small specimens. Phys Med Biol 39(10):1639–1657

    CAS  PubMed  Google Scholar 

  20. Paulus MJ, Sari-Sarraf H, Gleason SS, Bobrek M, Hicks JS, Johnson DK et al (1999) A new X-ray computed tomography system for laboratory mouse imaging. IEEE Trans Nucl Sci 46(3):558–564

    Google Scholar 

  21. Li H, Zhang H, Tang Z, Hu G (2008) Micro-computed tomography for small animal imaging: technological details. Prog Nat Sci 18(5):513–521

    CAS  Google Scholar 

  22. Johnson GA, Thompson MB, Gewalt SL, Hayes CE (1969) Nuclear magnetic resonance imaging at microscopic resolution. J Magn Reson 68(1):129–137

    Google Scholar 

  23. Eccles CD, Callaghan PT (1986) High-resolution imaging. The NMR microscope. J Magn Reson 68(2):393–398

    CAS  Google Scholar 

  24. Pan L, Zan L, Foster FS (1998) Ultrasonic and viscoelastic properties of skin under transverse mechanical stress in vitro. Ultrasound Med Biol 24(7):995–1007

    CAS  PubMed  Google Scholar 

  25. Cherry SR, Shao Y, Silverman RW, Meadors K, Siegel S, Chatziioannou A et al (1997) MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci 44(3):1161–1166

    CAS  Google Scholar 

  26. Gambhir SS, Barrio JR, Wu L, Iyer M, Namavari M, Satyamurthy N et al (1998) Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J Nucl Med 39(11):2003–2011

    CAS  PubMed  Google Scholar 

  27. Weber DA, Ivanovic M, Franceschi D, Strand SE, Erlandsson K, Franceschi M et al (1994) Pinhole SPECT: an approach to in vivo high resolution SPECT imaging in small laboratory animals. J Nucl Med 35(2):342–348

    CAS  PubMed  Google Scholar 

  28. Weisenberger AG, Bradley EL, Majewski S, Saha MS (1998) Development of a novel radiation imaging detector system for in vivo gene imaging in small animal studies. IEEE Trans Nucl Sci 45(3):1743–1749

    CAS  Google Scholar 

  29. Sharpe J, Ahlgren U, Perry P, Hill B, Ross A, Hecksher-Sørensen J et al (2002) Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296(5567):541–545

    CAS  PubMed  Google Scholar 

  30. Messier C, Émond S, Ethier K (1999) New techniques in stereotaxic surgery and anesthesia in the mouse. Pharmacol Biochem Behav 63(2):313–318

    CAS  PubMed  Google Scholar 

  31. Hildebrandt IJ, Su H, Weber WA (2008) Anesthesia and other considerations for in vivo imaging of small animals. ILAR J 49(1):17–26

    CAS  PubMed  Google Scholar 

  32. Foster FS, Pavlin CJ, Harasiewicz KA, Christopher DA, Turnbull DH (2000) Advances in ultrasound biomicroscopy. Ultrasound Med Biol 26(1):1–27

    CAS  PubMed  Google Scholar 

  33. Coatney RW (2001) Ultrasound imaging: principles and applications in rodent research. ILAR J 42(3):233–247

    CAS  PubMed  Google Scholar 

  34. Kruse DE, Silverman RH, Fornaris RJ, Coleman DJ, Ferrara KW (1998) A swept-scanning mode for estimation of blood velocity in the microvasculature. IEEE Trans Ultrason Ferroelectr Freq Control 45(6):1437–1440

    CAS  PubMed  Google Scholar 

  35. Goertz DE, Christopher DA, Yu JL, Kerbel RS, Burns PN, Foster FS (2000) High-frequency color flow imaging of the microcirculation. Ultrasound Med Biol 26(1):63–71

    CAS  PubMed  Google Scholar 

  36. Greco A, Mancini M, Gargiulo S, Gramanzini M, Claudio PP, Brunetti A et al (2012) Ultrasound biomicroscopy in small animal research: applications in molecular and preclinical imaging. J Biomed Biotechnol 2012:519238

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Stride E, Saffari N (2003) Microbubble ultrasound contrast agents: a review. Proc Inst Mech Eng H 217(6):429–447

    CAS  PubMed  Google Scholar 

  38. Turnbull DH, Bloomfield TS, Baldwin HS, Foster FS, Joyner AL (1995) Ultrasound backscatter microscope analysis of early mouse embryonic brain development. Proc Natl Acad Sci U S A 92(6):2239–2243

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Turnbull DH, Foster FS (2002) In vivo ultrasound biomicroscopy in developmental biology. Trends Biotechnol 20(8):S29–S33

    Google Scholar 

  40. Corrigan N, Brazil DP, McAuliffe FM (2010) High-frequency ultrasound assessment of the murine heart from embryo through to juvenile. Reprod Sci 17(2):147–157

    PubMed  Google Scholar 

  41. Aristizábal O, Christopher DA, Foster FS, Turnbull DH (1998) 40-MHZ echocardiography scanner for cardiovascular assessment of mouse embryos. Ultrasound Med Biol 24(9):1407–1417

    PubMed  Google Scholar 

  42. Srinivasan S, Baldwin HS, Aristizabal O, Kwee L, Labow M, Artman M et al (1998) Noninvasive, in utero imaging of mouse embryonic heart development with 40-MHz echocardiography. Circulation 98(9):912–918

    CAS  PubMed  Google Scholar 

  43. Spurney CF, Lo CW, Leatherbury L (2006) Fetal mouse imaging using echocardiography: a review of current technology. Echocardiography 23(10):891–899

    PubMed  Google Scholar 

  44. Olsson M, Campbell K, Turnbull DH (1997) Specification of mouse telencephalic and mid-hindbrain progenitors following heterotopic ultrasound-guided embryonic transplantation. Neuron 19(4):761–772

    CAS  PubMed  Google Scholar 

  45. Liu A, Joyner AL, Turnbull DH (1998) Alteration of limb and brain patterning in early mouse embryos by ultrasound-guided injection of Shh-expressing cells. Mech Dev 75(1–2):107–115

    CAS  PubMed  Google Scholar 

  46. Turnbull DH (1999) In utero ultrasound backscatter microscopy of early stage mouse embryos. Comput Med Imaging Graph 23(1):25–31

    CAS  PubMed  Google Scholar 

  47. Slevin JC, Byers L, Gertsenstein M, Qu D, Mu J, Sunn N et al (2006) High resolution ultrasound-guided microinjection for interventional studies of early embryonic and placental development in vivo in mice. BMC Dev Biol 6:10

    PubMed Central  PubMed  Google Scholar 

  48. Pierfelice TJ, Gaiano N (2010) Ultrasound-guided microinjection into the mouse forebrain in utero at E9.5. J Vis Exp [Internet]. 2010 [cited 2012 Sep 4];(45). Available from: http://www.ncbi.nlm.nih.gov/pubmed/21113114

  49. Nieman BJ, Turnbull DH (2010) Ultrasound and magnetic resonance microimaging of mouse development. Methods Enzymol 476:379–400

    PubMed Central  PubMed  Google Scholar 

  50. Phoon CKL, Turnbull DH (2003) Ultrasound biomicroscopy-Doppler in mouse cardiovascular development. Physiol Genomics 14(1):3–15

    PubMed  Google Scholar 

  51. Foster FS, Mehi J, Lukacs M, Hirson D, White C, Chaggares C et al (2009) A new 15-50 MHz array-based micro-ultrasound scanner for preclinical imaging. Ultrasound Med Biol 35(10):1700–1708

    PubMed  Google Scholar 

  52. Turnbull DH, Ramsay JA, Shivji GS, Bloomfield TS, From L, Sauder DN et al (1996) Ultrasound backscatter microscope analysis of mouse melanoma progression. Ultrasound Med Biol 22(7):845–853

    CAS  PubMed  Google Scholar 

  53. Wirtzfeld LA, Wu G, Bygrave M, Yamasaki Y, Sakai H, Moussa M et al (2005) A new three-dimensional ultrasound microimaging technology for preclinical studies using a transgenic prostate cancer mouse model. Cancer Res 65(14):6337–6345

    CAS  PubMed  Google Scholar 

  54. Banihashemi B, Vlad R, Debeljevic B, Giles A, Kolios MC, Czarnota GJ (2008) Ultrasound imaging of apoptosis in tumor response: novel preclinical monitoring of photodynamic therapy effects. Cancer Res 68(20):8590–8596

    CAS  PubMed  Google Scholar 

  55. Goertz DE, Yu JL, Kerbel RS, Burns PN, Foster FS (2003) High-frequency 3-D color-flow imaging of the microcirculation. Ultrasound Med Biol 29(1):39–51

    PubMed  Google Scholar 

  56. Xuan JW, Bygrave M, Jiang H, Valiyeva F, Dunmore-Buyze J, Holdsworth DW et al (2007) Functional neoangiogenesis imaging of genetically engineered mouse prostate cancer using three-dimensional power Doppler ultrasound. Cancer Res 67(6):2830–2839

    CAS  PubMed  Google Scholar 

  57. Willmann JK, Paulmurugan R, Chen K, Gheysens O, Rodriguez-Porcel M, Lutz AM et al (2008) US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in Mice1. Radiology 246(2):508–518

    PubMed Central  PubMed  Google Scholar 

  58. Willmann JK, Lutz AM, Paulmurugan R, Patel MR, Chu P, Rosenberg J et al (2008) Dual-targeted contrast agent for US assessment of tumor angiogenesis in Vivo1. Radiology 248(3):936–944

    PubMed Central  PubMed  Google Scholar 

  59. Kiessling F, Fokong S, Koczera P, Lederle W, Lammers T (2012) Ultrasound microbubbles for molecular diagnosis, therapy, and theranostics. J Nucl Med 53(3):345–348

    CAS  PubMed  Google Scholar 

  60. Geis NA, Katus HA, Bekeredjian R (2012) Microbubbles as a vehicle for gene and drug delivery: current clinical implications and future perspectives. Curr Pharm Des 18(15):2166–2183

    CAS  PubMed  Google Scholar 

  61. Scherrer-Crosbie M, Thibault HB (2008) Echocardiography in translational research: of mice and Men. J Am Soc Echocardiogr 21(10):1083–1092

    PubMed Central  PubMed  Google Scholar 

  62. Syed F, Diwan A, Hahn HS (2005) Murine echocardiography: a practical approach for phenotyping genetically manipulated and surgically modeled mice. J Am Soc Echocardiogr 18(9):982–990

    PubMed  Google Scholar 

  63. Manning WJ, Wei JY, Katz SE, Douglas PS, Gwathmey JK (1993) Echocardiographically detected myocardial infarction in the mouse. Lab Anim Sci 43(6):583–585

    CAS  PubMed  Google Scholar 

  64. Fentzke RC, Korcarz CE, Shroff SG, Lin H, Sandelski J, Leiden JM et al (1997) Evaluation of ventricular and arterial hemodynamics in anesthetized closed-chest mice. J Am Soc Echocardiogr 10(9):915–925

    CAS  PubMed  Google Scholar 

  65. Zhou Y-Q, Davidson L, Henkelman RM, Nieman BJ, Foster FS, Yu LX et al (2004) Ultrasound-guided left-ventricular catheterization: a novel method of whole mouse perfusion for microimaging. Lab Invest 84(3):385–389

    PubMed  Google Scholar 

  66. Springer ML, Sievers RE, Viswanathan MN, Yee MS, Foster E, Grossman W et al (2005) Closed-chest cell injections into mouse myocardium guided by high-resolution echocardiography. Am J Physiol Heart Circ Physiol 289(3):H1307–H1314

    CAS  PubMed  Google Scholar 

  67. Paulus MJ, Gleason SS, Kennel SJ, Hunsicker PR, Johnson DK (2000) High resolution X-ray computed tomography: an emerging tool for small animal cancer research. Neoplasia 2(1–2):62–70

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Bartling SH, Stiller W, Semmler W, Kiessling F (2007) Small animal computed tomography imaging. Curr Med Imaging Rev 3(1):45–59

    Google Scholar 

  69. Badea CT, Drangova M, Holdsworth DW, Johnson GA (2008) In vivo small-animal imaging using micro-CT and digital subtraction angiography. Phys Med Biol 53(19):R319–R350

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Paulus MJ, Gleason SS, Easterly ME, Foltz CJ (2001) A review of high-resolution X-ray computed tomography and other imaging modalities for small animal research. Lab Anim (NY) 30(3):36–45

    CAS  Google Scholar 

  71. Wang DG, Vannier DM. Micro-CT Scanners for biomedical applications: an overview. Adv Imaging [Internet]. [cited 2012 Sep 27]; Available from: http://www.highbeam.com/doc/1G1-77378124.html

  72. Kastis GA, Furenlid LR, Wilson DW, Peterson TE, Barber HB, Barrett HH (2004) Compact CT/SPECT small-animal imaging system. IEEE Trans Nucl Sci 51(1):63–67

    Google Scholar 

  73. Goertzen AL, Nagarkar V, Street RA, Paulus MJ, Boone JM, Cherry SR (2004) A comparison of x-ray detectors for mouse CT imaging. Phys Med Biol 49(23):5251–5265

    PubMed  Google Scholar 

  74. Holdsworth DW, Thornton MM (2002) Micro-CT in small animal and specimen imaging. Trends Biotechnol 20(8):S34–S39

    Google Scholar 

  75. Goertzen AL, Meadors AK, Silverman RW, Cherry SR (2002) Simultaneous molecular and anatomical imaging of the mouse in vivo. Phys Med Biol 47(24):4315–4328

    PubMed  Google Scholar 

  76. Ford NL, Thornton MM, Holdsworth DW (2003) Fundamental image quality limits for microcomputed tomography in small animals. Med Phys 30(11):2869–2877

    CAS  PubMed  Google Scholar 

  77. Boone JM, Velazquez O, Cherry SR (2004) Small-animal X-ray dose from micro-CT. Mol Imaging 3(3):149–158

    PubMed  Google Scholar 

  78. Taschereau R, Chow PL, Chatziioannou AF (2006) Monte carlo simulations of dose from microCT imaging procedures in a realistic mouse phantom. Med Phys 33(1):216–224

    PubMed Central  PubMed  Google Scholar 

  79. Turner CH, Hsieh YF, Müller R, Bouxsein ML, Baylink DJ, Rosen CJ et al (2000) Genetic regulation of cortical and trabecular bone strength and microstructure in inbred strains of mice. J Bone Miner Res 15(6):1126–1131

    CAS  PubMed  Google Scholar 

  80. Guldberg RE, Lin ASP, Coleman R, Robertson G, Duvall C (2004) Microcomputed tomography imaging of skeletal development and growth. Birth Defects Res C Embryo Today 72(3):250–259

    CAS  PubMed  Google Scholar 

  81. Schmidt EJ, Parsons TE, Jamniczky HA, Gitelman J, Trpkov C, Boughner JC et al (2010) Micro-computed tomography-based phenotypic approaches in embryology: procedural artifacts on assessments of embryonic craniofacial growth and development. BMC Dev Biol 10:18

    PubMed Central  PubMed  Google Scholar 

  82. Badea C, Hedlund LW, Johnson GA (2004) Micro-CT with respiratory and cardiac gating. Med Phys 31(12):3324–3329

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Badea CT, Hedlund LW, Wheeler CT, Mai W, Johnson GA (2004) Volumetric microCT system for in vivo microscopy. Biomedical imaging: nano to macro, 2004. IEEE Int Symp 2:1377–1380

    Google Scholar 

  84. Badea CT, Fubara B, Hedlund LW, Johnson GA (2005) 4-D micro-CT of the mouse heart. Mol Imaging 4(2):110–116

    PubMed  Google Scholar 

  85. Badea CT, Schreibmann E, Fox T (2008) A registration based approach for 4D cardiac micro-CT using combined prospective and retrospective gating. Med Phys 35(4):1170–1179

    PubMed Central  PubMed  Google Scholar 

  86. Guo X, Johnston SM, Qi Y, Johnson GA, Badea CT (2012) 4D micro-CT using fast prospective gating. Phys Med Biol 57(1):257–271

    PubMed Central  PubMed  Google Scholar 

  87. Cavanaugh D, Johnson E, Price RE, Kurie J, Travis EL, Cody DD (2004) In vivo respiratory-gated micro-CT imaging in small-animal oncology models. Mol Imaging 3(1):55–62

    PubMed  Google Scholar 

  88. Walters EB, Panda K, Bankson JA, Brown E, Cody DD (2004) Improved method of in vivo respiratory-gated micro-CT imaging. Phys Med Biol 49(17):4163–4172

    PubMed  Google Scholar 

  89. Cody DD, Nelson CL, Bradley WM, Wislez M, Juroske D, Price RE et al (2005) Murine lung tumor measurement using respiratory-gated micro-computed tomography. Invest Radiol 40(5):263–269

    PubMed  Google Scholar 

  90. Namati E, Chon D, Thiesse J, Hoffman EA, de Ryk J, Ross A et al (2006) In vivo micro-CT lung imaging via a computer-controlled intermittent iso-pressure breath hold (IIBH) technique. Phys Med Biol 51(23):6061–6075

    CAS  PubMed  Google Scholar 

  91. Thiesse J, Namati E, Sieren JC, Smith AR, Reinhardt JM, Hoffman EA et al (2010) Lung structure phenotype variation in inbred mouse strains revealed through in vivo micro-CT imaging. J Appl Physiol 109(6):1960–1968

    PubMed Central  PubMed  Google Scholar 

  92. De Clerck NM, Meurrens K, Weiler H, Van Dyck D, Van Houtte G, Terpstra P et al (2004) High-resolution X-ray microtomography for the detection of lung tumors in living mice. Neoplasia 6(4):374–379

    PubMed Central  PubMed  Google Scholar 

  93. Plathow C, Li M, Gong P, Zieher H, Kiessling F, Peschke P et al (2004) Computed tomography monitoring of radiation-induced lung fibrosis in mice. Invest Radiol 39(10):600–609

    PubMed  Google Scholar 

  94. Postnov AA, Meurrens K, Weiler H, Van Dyck D, Xu H, Terpstra P et al (2005) In vivo assessment of emphysema in mice by high resolution X-ray microtomography. J Microsc 220(Pt 1):70–75

    CAS  PubMed  Google Scholar 

  95. Li X-F, Zanzonico P, Ling CC, O’Donoghue J (2006) Visualization of experimental lung and bone metastases in live nude mice by X-ray micro-computed tomography. Technol Cancer Res Treat 5(2):147–155

    PubMed  Google Scholar 

  96. Shofer S, Badea C, Auerbach S, Schwartz DA, Johnson GA (2007) A micro-computed tomography-based method for the measurement of pulmonary compliance in healthy and bleomycin-exposed mice. Exp Lung Res 33(3–4):169–183

    PubMed Central  PubMed  Google Scholar 

  97. Ritman EL (2005) Micro-computed tomography of the lungs and pulmonary-vascular system. Proc Am Thorac Soc 2(6):477, –80, 501

    PubMed Central  PubMed  Google Scholar 

  98. Kennel SJ, Davis IA, Branning J, Pan H, Kabalka GW, Paulus MJ (2000) High resolution computed tomography and MRI for monitoring lung tumor growth in mice undergoing radioimmunotherapy: correlation with histology. Med Phys 27(5):1101–1107

    CAS  PubMed  Google Scholar 

  99. Savai R, Langheinrich AC, Schermuly RT, Pullamsetti SS, Dumitrascu R, Traupe H et al (2009) Evaluation of angiogenesis using micro-computed tomography in a xenograft mouse model of lung cancer. Neoplasia 11(1):48–56

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Bartling SH, Kuntz J, Semmler W (2010) Gating in small-animal cardio-thoracic CT. Methods 50(1):42–49

    CAS  PubMed  Google Scholar 

  101. Chugh BP, Lerch JP, Yu LX, Pienkowski M, Harrison RV, Henkelman RM et al (2009) Measurement of cerebral blood volume in mouse brain regions using micro-computed tomography. Neuroimage 47(4):1312–1318

    PubMed  Google Scholar 

  102. Callaghan T late PT (1993) Principles of nuclear magnetic resonance microscopy. New Ed. Clarendon Press: Oxford

    Google Scholar 

  103. Haacke EM, Brown RW, Thompson MR, Venkatesan R, Cheng N. (2013) Magnetic Resonance Imaging: Physical Principles and Sequence Design. 2nd Revised ed. Wiley-Blackwell (an imprint of John Wiley & Sons Ltd)

    Google Scholar 

  104. MRI from Picture to Proton:2nd (Second) edition. Cambridge University Press; 2007.

    Google Scholar 

  105. Pautler RG, Fraser SE (2003) The year(s) of the contrast agent—micro-MRI in the new millennium. Curr Opin Immunol 15(4):385–392

    CAS  PubMed  Google Scholar 

  106. Pautler RG (2004) Mouse MRI: concepts and applications in physiology. Physiology (Bethesda) 19:168–175

    Google Scholar 

  107. Maronpot RR, Sills RC, Johnson GA (2004) Applications of magnetic resonance microscopy. Toxicol Pathol 32(Suppl 2):42–48

    PubMed  Google Scholar 

  108. Benveniste H, Blackband SJ (2006) Translational neuroscience and magnetic-resonance microscopy. Lancet Neurol 5(6):536–544

    PubMed  Google Scholar 

  109. Turnbull DH, Mori S (2007) MRI in mouse developmental biology. NMR Biomed 20(3):265–274

    PubMed Central  PubMed  Google Scholar 

  110. Driehuys B, Nouls J, Badea A, Bucholz E, Ghaghada K, Petiet A et al (2008) Small animal imaging with magnetic resonance microscopy. ILAR J 49(1):35–53

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87(24):9868–9872

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Marjanska M, Curran GL, Wengenack TM, Henry P-G, Bliss RL, Poduslo JF et al (2005) Monitoring disease progression in transgenic mouse models of Alzheimer’s disease with proton magnetic resonance spectroscopy. Proc Natl Acad Sci U S A 102(33):11906–11910

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Brockmann MA, Kemmling A, Groden C (2007) Current issues and perspectives in small rodent magnetic resonance imaging using clinical MRI scanners. Methods 43(1):79–87

    CAS  PubMed  Google Scholar 

  114. Bulte JW, van Zijl PC, Mori S (2002) Magnetic resonance microscopy and histology of the CNS. Trends Biotechnol 20(8):S24–S28

    Google Scholar 

  115. Benveniste H, Blackband S (2002) MR microscopy and high resolution small animal MRI: applications in neuroscience research. Prog Neurobiol 67(5):393–420

    PubMed  Google Scholar 

  116. McConville P, Moody JB, Moffat BA (2005) High-throughput magnetic resonance imaging in mice for phenotyping and therapeutic evaluation. Curr Opin Chem Biol 9(4):413–420

    CAS  PubMed  Google Scholar 

  117. Jacobs RE, Ahrens ET, Dickinson ME, Laidlaw D (1999) Towards a microMRI atlas of mouse development. Comput Med Imaging Graph 23(1):15–24

    CAS  PubMed  Google Scholar 

  118. Smith BR (2001) Magnetic resonance microscopy in cardiac development. Microsc Res Tech 52(3):323–330

    CAS  PubMed  Google Scholar 

  119. Nair G, Echo-planar DTQ, BOLD (2004) fMRI of mice on a narrow-bore 9.4 T magnet. Magn Reson Med 52(2):430–434

    PubMed Central  PubMed  Google Scholar 

  120. Griffitts J, Tesiram Y, Reid GE, Saunders D, Floyd RA, Towner RA (2009) In vivo MRS assessment of altered fatty acyl unsaturation in liver tumor formation of a TGFα/c-myc transgenic mouse model. J Lipid Res 50(4):611–622

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Kiessling F, Lichy M, Grobholz R, Heilmann M, Huber PE, Meding J et al (2003) Hemodynamic and metabolic characterization of orthotopic rat prostate carcinomas using dynamic MRI and proton magnetic resonance spectroscopy. Radiologe 43(6):489–494

    CAS  PubMed  Google Scholar 

  122. Kiessling F, Huber PE, Grobholz R, Heilmann M, Meding J, Lichy MP et al (2004) Dynamic magnetic resonance tomography and proton magnetic resonance spectroscopy of prostate cancers in rats treated by radiotherapy. Invest Radiol 39(1):34–44

    PubMed  Google Scholar 

  123. Bullitt E, Wolthusen PA, Brubaker L, Lin W, Zeng D, Dyke TV (2006) Malignancy-associated vessel tortuosity: a computer-assisted, MR angiographic study of choroid plexus carcinoma in genetically engineered mice. AJNR Am J Neuroradiol 27(3):612–619

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Arai T, Kofidis T, Bulte JWM, de Bruin J, Venook RD, Berry GJ et al (2006) Dual in vivo magnetic resonance evaluation of magnetically labeled mouse embryonic stem cells and cardiac function at 1.5 t. Magn Reson Med 55(1):203–209

    PubMed  Google Scholar 

  125. Chatziioannou A, Tai YC, Doshi N, Cherry SR (2001) Detector development for microPET II: a 1 microl resolution PET scanner for small animal imaging. Phys Med Biol 46(11):2899–2910

    CAS  PubMed  Google Scholar 

  126. Stickel JR, Cherry SR (2005) High-resolution PET detector design: modelling components of intrinsic spatial resolution. Phys Med Biol 50(2):179–195

    PubMed  Google Scholar 

  127. Meikle SR, Kench P, Kassiou M, Banati RB (2005) Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol 50(22):R45–R61

    CAS  PubMed  Google Scholar 

  128. Herschman HR (2003) Micro-PET imaging and small animal models of disease. Curr Opin Immunol 15(4):378–384

    CAS  PubMed  Google Scholar 

  129. Virdee K, Cumming P, Caprioli D, Jupp B, Rominger A, Aigbirhio FI et al (2012) Applications of positron emission tomography in animal models of neurological and neuropsychiatric disorders. Neurosci Biobehav Rev 36(4):1188–1216

    PubMed  Google Scholar 

  130. Coll J-L, Josserand V (2006) Imaging lung cancer in mice models. Drug Discov Today: Disease Models 3(3):219–224

    Google Scholar 

  131. Hickson J (2009) In vivo optical imaging: preclinical applications and considerations. Urol Oncol 27(3):295–297

    PubMed  Google Scholar 

  132. Hillman EMC, Amoozegar CB, Wang T, McCaslin AFH, Bouchard MB, Mansfield J et al (2011) In vivo optical imaging and dynamic contrast methods for biomedical research. Philos Transact A Math Phys Eng Sci 369(1955):4620–4643

    Google Scholar 

  133. Cheong WF, Prahl SA, Welch AJ (1990) A review of the optical properties of biological tissues. IEEE J Quantum Electron 26(12):2166–2185

    Google Scholar 

  134. Leblond F, Davis SC, Valdés PA, Pogue BW (2010) Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications. J Photochem Photobiol B Biol 98(1):77–94

    CAS  Google Scholar 

  135. Bremer C, Ntziachristos V, Weissleder R (2003) Optical-based molecular imaging: contrast agents and potential medical applications. Eur Radiol 13(2):231–243

    PubMed  Google Scholar 

  136. Welsh DK, Kay SA (2005) Bioluminescence imaging in living organisms. Curr Opin Biotechnol 16(1):73–78

    CAS  PubMed  Google Scholar 

  137. Ntziachristos V (2006) Fluorescence molecular imaging. Annu Rev Biomed Eng 8:1–33

    CAS  PubMed  Google Scholar 

  138. Henriquez NV, van Overveld PGM, Que I, Buijs JT, Bachelier R, Kaijzel EL et al (2007) Advances in optical imaging and novel model systems for cancer metastasis research. Clin Exp Metastasis 24(8):699–705

    PubMed  Google Scholar 

  139. Park C-W, Rhee Y-S, Vogt FG, Hayes D Jr, Zwischenberger JB, DeLuca PP et al (2012) Advances in microscopy and complementary imaging techniques to assess the fate of drugs ex vivo in respiratory drug delivery: an invited paper. Adv Drug Deliv Rev 64(4):344–356

    CAS  PubMed  Google Scholar 

  140. Luker KE, Luker GD (2008) Applications of bioluminescence imaging to antiviral research and therapy: multiple luciferase enzymes and quantitation. Antiviral Res 78(3):179–187

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7(5):626–634

    CAS  PubMed  Google Scholar 

  142. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Rao J, Dragulescu-Andrasi A, Yao H (2007) Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol 18(1):17–25

    CAS  PubMed  Google Scholar 

  144. Zinn KR, Chaudhuri TR, Szafran AA, O’Quinn D, Weaver C, Dugger K et al (2008) Noninvasive bioluminescence imaging in small animals. ILAR J 49(1):103–115

    CAS  PubMed Central  PubMed  Google Scholar 

  145. van der Meel R, Gallagher WM, Oliveira S, O’Connor AE, Schiffelers RM, Byrne AT (2010) Recent advances in molecular imaging biomarkers in cancer: application of bench to bedside technologies. Drug Discov Today 15(3–4):102–114

    PubMed  Google Scholar 

  146. Virostko J, Jansen ED (2009) Validation of bioluminescent imaging techniques. Methods Mol Biol 574:15–23

    CAS  PubMed  Google Scholar 

  147. Snoeks TJA, Löwik CWGM, Kaijzel EL (2010) “In vivo” optical approaches to angiogenesis imaging. Angiogenesis 13(2):135–147

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Roncali E, Savinaud M, Levrey O, Rogers KL, Maitrejean S, Tavitian B (2008) New device for real-time bioluminescence imaging in moving rodents. J Biomed Opt 13(5):054035

    PubMed  Google Scholar 

  149. Graves EE, Ripoll J, Weissleder R, Ntziachristos V (2003) A submillimeter resolution fluorescence molecular imaging system for small animal imaging. Med Phys 30(5):901–911

    CAS  PubMed  Google Scholar 

  150. Graves EE, Weissleder R, Ntziachristos V (2004) Fluorescence molecular imaging of small animal tumor models. Curr Mol Med 4(4):419–430

    CAS  PubMed  Google Scholar 

  151. Levenson RM, Lynch DT, Kobayashi H, Backer JM, Backer MV (2008) Multiplexing with multispectral imaging: from mice to microscopy. ILAR J 49(1):78–88

    CAS  PubMed  Google Scholar 

  152. Luker GD, Luker KE (2008) Optical imaging: current applications and future directions. J Nucl Med 49(1):1–4

    PubMed  Google Scholar 

  153. Choy G, Choyke P, Libutti SK (2003) Current advances in molecular imaging: noninvasive in vivo bioluminescent and fluorescent optical imaging in cancer research. Mol Imaging 2(4):303–312

    CAS  PubMed  Google Scholar 

  154. Lyons SK (2005) Advances in imaging mouse tumour models in vivo. J Pathol 205(2):194–205

    CAS  PubMed  Google Scholar 

  155. Luker KE, Luker GD (2010) Bioluminescence imaging of reporter mice for studies of infection and inflammation. Antiviral Res 86(1):93–100

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Ntziachristos V, Yodh AG, Schnall M, Chance B (2000) Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc Natl Acad Sci U S A 97(6):2767–2772

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Tung C-H (2004) Fluorescent peptide probes for in vivo diagnostic imaging. Biopolymers 76(5):391–403

    CAS  PubMed  Google Scholar 

  158. Weissleder R, Tung CH, Mahmood U, Bogdanov A Jr (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17(4):375–378

    CAS  PubMed  Google Scholar 

  159. Funovics M, Weissleder R, Tung C-H (2003) Protease sensors for bioimaging. Anal Bioanal Chem 377(6):956–963

    CAS  PubMed  Google Scholar 

  160. Hama Y, Urano Y, Koyama Y, Choyke PL, Kobayashi H (2007) Activatable fluorescent molecular imaging of peritoneal metastases following pretargeting with a biotinylated monoclonal antibody. Cancer Res 67(8):3809–3817

    CAS  PubMed  Google Scholar 

  161. Licha K, Resch-Genger U (2011) Probes for optical imaging: new developments. Drug Discov Today: Technol 8(2–4):e87–e94

    CAS  Google Scholar 

  162. Hintersteiner M, Enz A, Frey P, Jaton A-L, Kinzy W, Kneuer R et al (2005) In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe. Nat Biotechnol 23(5):577–583

    CAS  PubMed  Google Scholar 

  163. Hasegawa BH, Iwata K, Wong KH, Wu MC, Da Silva AJ, Tang HR et al (2002) Dual-modality imaging of function and physiology. Acad Radiol 9(11):1305–1321

    PubMed  Google Scholar 

  164. Zanzonico PB (2006) Broad-spectrum multi-modality image registration: from PET, CT, and MRI to autoradiography, microscopy, and beyond. Conf Proc IEEE Eng Med Biol Soc 1:1584–1588

    CAS  PubMed  Google Scholar 

  165. Zanzonico PB, Nehmeh SA (2006) Introduction to clinical and laboratory (small-animal) image registration and fusion. Conf Proc IEEE Eng Med Biol Soc 1:1580–1583

    PubMed  Google Scholar 

  166. Stout DB, Zaidi H (2008) Preclinical multimodality imaging in vivo. PET Clinics 3(3):251–273

    Google Scholar 

  167. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R et al (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41(8):1369–1379

    CAS  PubMed  Google Scholar 

  168. Fontaine R, Belanger F, Cadorette J, Leroux J-D, Martin J-P, Michaud J-B et al (2005) Architecture of a dual-modality, high-resolution, fully digital positron emission tomography/computed tomography (PET/CT) scanner for small animal imaging. IEEE Trans Nucl Sci 52(3):691–696

    Google Scholar 

  169. Jan M-L, Chuang K-S, Chen G-W, Ni Y-C, Chen S, Chang C-H et al (2005) A three-dimensional registration method for automated fusion of micro PET-CT-SPECT whole-body images. IEEE Trans Med Imaging 24(7):886–893

    PubMed  Google Scholar 

  170. Jan M-L, Ni Y-C, Chen K-W, Liang H-C, Chuang K-S, Fu Y-K (2006) A combined micro-PET/CT scanner for small animal imaging. Nucl Instr Meth Phys Res A 569(2):314–318

    CAS  Google Scholar 

  171. Liang H, Yang Y, Yang K, Wu Y, Boone JM, Cherry SR (2007) A microPET/CT system for in vivo small animal imaging. Phys Med Biol 52(13):3881–3894

    CAS  PubMed  Google Scholar 

  172. Williams MB. (2000) Integrated CT-SPECT system for small-animal imaging. SPIE; 2000 [cited 2012 Sep 7]. 265–74. Available from: http://spie.org/x648.html?product_id=410571

  173. Iwata K, Hwang AB, Wu MC, Tang HR, Da Silva AJ, Wong KH, et al. (2001) Design and utility of a small animal CT/SPECT system. 2001 IEEE Nuclear Science Symposium Conference Record 3:1849–1852

    Google Scholar 

  174. Weisenberger AG, Wojcik R, Bradley EL, Brewer P, Majewski S, Qian J et al (2003) SPECT-CT system for small animal imaging. IEEE Trans Nucl Sci 50(1):74–79

    Google Scholar 

  175. Franc BL, Acton PD, Mari C, Hasegawa BH (2008) Small-animal SPECT and SPECT/CT: important tools for preclinical investigation. J Nucl Med 49(10):1651–1663

    PubMed  Google Scholar 

  176. Cherry SR (2006) Multimodality in vivo imaging systems: twice the power or double the trouble? Annu Rev Biomed Eng 8:35–62

    CAS  PubMed  Google Scholar 

  177. Cherry SR (2009) Multimodality imaging: beyond PET/CT and SPECT/CT. Semin Nucl Med 39(5):348–353

    PubMed Central  PubMed  Google Scholar 

  178. Alberto Del Guerra NB. State-of-the-art of PET, SPECT and CT for small animal imaging. Nucl Instr Meth Phys Res A (1):119–124

    Google Scholar 

  179. Christensen NL, Hammer BE, Heil BG, Fetterly K (1995) Positron emission tomography within a magnetic field using photomultiplier tubes and lightguides. Phys Med Biol 40(4):691–697

    CAS  PubMed  Google Scholar 

  180. Slates R, Cherry S, Boutefnouchet A, Shao Y, Dahlborn M, Farahani K (1999) Design of a small animal MR compatible PET scanner. IEEE Trans Nucl Sci 46(3):565–570

    Google Scholar 

  181. Mackewn JE, Strul D, Hallett WA, Halsted P, Page RA, Keevil SF et al (2005) Design and development of an MR-compatible PET scanner for imaging small animals. IEEE Trans Nucl Sci 52(5):1376–1380

    Google Scholar 

  182. Catana C, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Cherry SR (2006) Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 47(12):1968–1976

    PubMed  Google Scholar 

  183. Raylman RR, Majewski S, Velan SS, Lemieux S, Kross B, Popov V et al (2007) Simultaneous acquisition of magnetic resonance spectroscopy (MRS) data and positron emission tomography (PET) images with a prototype MR-compatible, small animal PET imager. J Magn Reson 186(2):305–310

    CAS  PubMed Central  PubMed  Google Scholar 

  184. Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14(4):459–465

    CAS  PubMed  Google Scholar 

  185. Pichler BJ, Wehrl HF, Kolb A, Judenhofer MS (2008) Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? Semin Nucl Med 38(3):199–208

    PubMed Central  PubMed  Google Scholar 

  186. Pichler BJ, Judenhofer MS, Pfannenberg C (2008) Multimodal imaging approaches: PET/CT and PET/MRI. Handb Exp Pharmacol 185(Pt 1):109–132

    CAS  PubMed  Google Scholar 

  187. Sauter AW, Wehrl HF, Kolb A, Judenhofer MS, Pichler BJ (2010) Combined PET/MRI: one step further in multimodality imaging. Trends Mol Med 16(11):508–515

    PubMed  Google Scholar 

  188. Wehrl HF, Sauter AW, Judenhofer MS, Pichler BJ (2010) Combined PET/MR imaging–technology and applications. Technol Cancer Res Treat 9(1):5–20

    CAS  PubMed  Google Scholar 

  189. Wagenaar DJ, Kapusta M, Li J, Patt BE (2006) Rationale for the combination of nuclear medicine with magnetic resonance for pre-clinical imaging. Technol Cancer Res Treat 5(4):343–350

    PubMed  Google Scholar 

  190. Meier D, Wagenaar DJ, Chen S, Xu J, Yu J, Tsui BMW (2011) A SPECT camera for combined MRI and SPECT for small animals. Nucl Instr Meth Phys Res A 652(1):731–734

    CAS  Google Scholar 

  191. Prout DL, Silverman RW, Chatziioannou A (2004) Detector concept for OPET—a combined PET and optical imaging system. IEEE Trans Nucl Sci 51(3):752–756

    PubMed Central  PubMed  Google Scholar 

  192. Alexandrakis G, Rannou FR, Chatziioannou AF (2005) Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study. Phys Med Biol 50(17):4225–4241

    PubMed Central  PubMed  Google Scholar 

  193. Li C, Yang Y, Mitchell GS, Cherry SR (2011) Simultaneous PET and multispectral 3-dimensional fluorescence optical tomography imaging system. J Nucl Med 52(8):1268–1275

    PubMed  Google Scholar 

  194. Parnham KB, Chowdhury S, Li J, Wagenaar DJ, Patt BE (2006) Second-Generation, Tri-Modality Pre-Clinical Imaging System. IEEE Nuclear Science Symposium Conference Record, 2006. 1802–1805

    Google Scholar 

  195. Deroose CM, De A, Loening AM, Chow PL, Ray P, Chatziioannou AF et al (2007) Multimodality imaging of tumor xenografts and metastases in mice with combined small-animal PET, small-animal CT, and bioluminescence imaging. J Nucl Med 48(2):295–303

    CAS  PubMed Central  PubMed  Google Scholar 

  196. Hwang DW, Ko HY, Kim S-K, Kim D, Lee DS, Kim S (2009) Development of a quadruple imaging modality by using nanoparticles. Chemistry 15(37):9387–9393

    CAS  Google Scholar 

  197. Pomper MG (2005) Translational molecular imaging for cancer. Cancer Imaging 5 Spec No A:S16–26

    Google Scholar 

  198. de Kemp RA, Epstein FH, Catana C, Tsui BMW, Ritman EL (2010) Small-animal molecular imaging methods. J Nucl Med 51(Suppl 1):18S–32S

    PubMed Central  PubMed  Google Scholar 

  199. Louie A (2010) Multimodality imaging probes: design and challenges. Chem Rev 110(5):3146–3195

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Nolting DD, Nickels ML, Guo N, Pham W (2012) Molecular imaging probe development: a chemistry perspective. Am J Nucl Med Mol Imaging 2(3):273–306

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Baril .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Baril, N., Roth, M., Djouri, R. (2015). In Vivo Imaging in Mice. In: Roubertoux, P. (eds) Organism Models of Autism Spectrum Disorders. Neuromethods, vol 100. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2250-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2250-5_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2249-9

  • Online ISBN: 978-1-4939-2250-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics