Skip to main content

The Autistic Spectrum Disorders (ASD): From the Clinics to the Molecular Analysis

  • Protocol
  • First Online:
Organism Models of Autism Spectrum Disorders

Part of the book series: Neuromethods ((NM,volume 100))

Abstract

Autism has been described first as a behavioral disorder with emphasis on language and communication difficulties. Modeling the disease in nonhuman species was limited to analogic models. Recent advances combining genetic and molecular approaches have offered new perspectives. It has revealed that a wide number of genes were associated with autism spectrum disorder (ASD). ASD appears as a set of rare diseases. At the end of April 2013, we inventoried 66 PubMed entries associating reliably identified genes with standardized ASD diagnoses. The analysis of corresponding published papers demonstrates that almost all the genes impact neuron functions and more exactly transmission processes. We show that 51 out of the 66 genes are associated with a unique signaling pathway. The enrichment strategy using Gene Ontology (GO) combined with multivariate statistics indicates the impact of the signaling pathway on neuronal and regulatory or metabolic functions. This new vista offered by human genetics suggests the possibility to model genetic disorders associated with autism rather than an abstract nosography category.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Betancur C (2011) Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res 1380:42–77

    CAS  PubMed  Google Scholar 

  2. Stein JL, Parikshak NN, Geschwind DH (2013) Rare inherited variation in autism: beginning to see the forest and a few trees. Neuron 77(2):209–211

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Kanner L (1943) Autistic disturbances of affective contact. Nervous Child 2(3):217–250

    Google Scholar 

  4. Wing L, Gould J (1979) Severe impairments of social interaction and associated abnormalities in children: epidemiology and classification. J Autism Dev Disord 9(1):11–29

    CAS  PubMed  Google Scholar 

  5. Happe F, Ronald A, Plomin R (2006) Time to give up on a single explanation for autism. Nat Neurosci 9(10):1218–1220

    CAS  PubMed  Google Scholar 

  6. Association AP (2013) Diagnostic and statistical manual of mental disorders, DSM-5, 5th edn. American Psychiatric Association, Washington, DC

    Google Scholar 

  7. Lai MC, Lombardo MV, Baron-Cohen S (2014) Autism. Lancet 383(9920):896–910

    PubMed  Google Scholar 

  8. Buium N, Stuecher HU (1974) On some language parameters of autistic echolalia. Lang Speech 17(4):353–357

    CAS  PubMed  Google Scholar 

  9. Saad AG, Goldfeld M (2009) Echolalia in the language development of autistic individuals: a bibliographical review. Pro Fono 21(3):255–260

    PubMed  Google Scholar 

  10. Solomon M et al (2011) From lumping to splitting and back again: atypical social and language development in individuals with clinical-high-risk for psychosis, first episode schizophrenia, and autism spectrum disorders. Schizophr Res 131(1–3):146–151

    PubMed Central  PubMed  Google Scholar 

  11. Rapin I, Dunn M (1997) Language disorders in children with autism. Semin Pediatr Neurol 4(2):86–92

    CAS  PubMed  Google Scholar 

  12. Naigles LR (2013) Input and language development in children with autism. Semin Speech Lang 34(4):237–248

    PubMed  Google Scholar 

  13. Herlihy L, Knoch K, Vibert B, Fein D (2013) Parents’ first concerns about toddlers with autism spectrum disorder: effect of sibling status. Autism, doi:10.1177/1362361313509731

  14. Rutter M (1978) Diagnosis and definition of childhood autism. J Autism Child Schizophr 8(2):139–161

    CAS  PubMed  Google Scholar 

  15. Austin E (2005) Personality correlates of the broader autism phenotype as assessed by the Autism Spectrum Quotient (AQ). Pers Indiv Differ 2(38):451–460

    Google Scholar 

  16. Hurst RM, Nelson-Gray RO, Mitchell JT, Kwapil TR (2007) The relationship of Asperger’s characteristics and schizotypal personality traits in a non-clinical adult sample. J Autism Dev Disord 37(9):1711–1720

    PubMed  Google Scholar 

  17. Hoekstra RA, Bartels M, Cath DC, Boomsma DI (2008) Factor structure, reliability and criterion validity of the Autism-Spectrum Quotient (AQ): a study in Dutch population and patient groups. J Autism Dev Disord 38(8):1555–1566

    PubMed Central  PubMed  Google Scholar 

  18. Stewart ME, Austin EJ (2009) The structure of the Autism-Spectrum Quotient (AQ): evidence from a student sample in Scotland. Pers Indiv Differ 47(3):224–228

    Google Scholar 

  19. Kloosterman PH, Keefer KV, Kelley EA, Summerfeldt LJ, Parker JDA (2011) Evaluation of the factor structure of the Autism-Spectrum Quotient. Pers Indiv Differ 2(50):310–314

    Google Scholar 

  20. Lau WY, Kelly AB, Peterson CC (2013) Further evidence on the factorial structure of the Autism Spectrum Quotient (AQ) for adults with and without a clinical diagnosis of autism. J Autism Dev Disord 43(12):2807–2815

    PubMed  Google Scholar 

  21. Cuccaro ML et al (2003) Factor analysis of restricted and repetitive behaviors in autism using the Autism Diagnostic Interview-R. Child Psychiatry Hum Dev 34(1):3–17

    PubMed  Google Scholar 

  22. Bourreau Y, Roux S, Gomot M, Bonnet-Brilhault F, Barthelemy C (2009) Validation of the repetitive and restricted behaviour scale in autism spectrum disorders. Eur Child Adolesc Psychiatry 18(11):675–682

    PubMed  Google Scholar 

  23. Sipes M, Matson JL, Turygin N (2011) The use of the Battelle Developmental Inventory-Second Edition (BDI-2) as an early screener for autism spectrum disorders. Dev Neurorehabil 14(5):310–314

    PubMed  Google Scholar 

  24. Ronald A, Edelson LR, Asherson P, Saudino KJ (2010) Exploring the relationship between autistic-like traits and ADHD behaviors in early childhood: findings from a community twin study of 2-year-olds. J Abnorm Child Psychol 38(2):185–196

    PubMed Central  PubMed  Google Scholar 

  25. Ronald A et al (2006) Genetic heterogeneity between the three components of the autism spectrum: a twin study. J Am Acad Child Adolesc Psychiatry 45(6):691–699

    PubMed  Google Scholar 

  26. Ronald A, Happe F, Plomin R (2006) Genetic research into autism. Science 311(5763):952, author reply 952

    CAS  PubMed  Google Scholar 

  27. Ronald A, Happe F, Price TS, Baron-Cohen S, Plomin R (2006) Phenotypic and genetic overlap between autistic traits at the extremes of the general population. J Am Acad Child Adolesc Psychiatry 45(10):1206–1214

    PubMed  Google Scholar 

  28. Ginsberg MR, Rubin RA, Falcone T, Ting AH, Natowicz MR (2012) Brain transcriptional and epigenetic associations with autism. PloS One 7(9):e44736

    PubMed Central  PubMed  Google Scholar 

  29. Elsabbagh M et al (2012) Global prevalence of autism and other pervasive developmental disorders. Autism Res 5(3):160–179

    PubMed Central  PubMed  Google Scholar 

  30. Kogan MD et al (2009) Prevalence of parent-reported diagnosis of autism spectrum disorder among children in the US, 2007. Pediatrics 124(5):1395–1403

    PubMed  Google Scholar 

  31. Hertz-Picciotto I, Delwiche L (2009) The rise in autism and the role of age at diagnosis. Epidemiology 20(1):84–90

    PubMed Central  PubMed  Google Scholar 

  32. Fisch GS (2012) Nosology and epidemiology in autism: classification counts. Am J Med Genet C Semin Med Genet 160C(2):91–103

    PubMed  Google Scholar 

  33. Fisch GS (2012) Autism and epistemology III: child development, behavioral stability, and reliability of measurement. Am J Med Genet A 158A(5):969–979

    PubMed  Google Scholar 

  34. Roubertoux PL, Carlier M (1995) L’apport de la génétique à la psychiatrie de l’enfant. In: Lebovici S, Diatkine R, Soulé M (eds) Nouveau Traité de Psychiatrie de l’Enfant et de l’Adolescent. PUF, Paris, pp 189–202

    Google Scholar 

  35. Glessner JT et al (2009) Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459(7246):569–573

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Pinto D et al (2010) Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466(7304):368–372

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Voineagu I et al (2011) Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474(7351):380–384

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Li X, Zou H, Brown WT (2012) Genes associated with autism spectrum disorder. Brain Res Bull 88(6):543–552

    CAS  PubMed  Google Scholar 

  39. Sanders SJ et al (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485(7397):237–241

    CAS  PubMed Central  PubMed  Google Scholar 

  40. O’Roak BJ et al (2012) Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338(6114):1619–1622

    PubMed Central  PubMed  Google Scholar 

  41. Neale BM et al (2012) Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485(7397):242–245

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Ebert DH, Greenberg ME (2013) Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493(7432):327–337

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Voineagu I, Eapen V (2013) Converging pathways in autism spectrum disorders: interplay between synaptic dysfunction and immune responses. Front Hum Neurosci 7:738

    PubMed Central  PubMed  Google Scholar 

  44. Jedlicka P et al (2013) Neuroligin-1 regulates excitatory synaptic transmission, LTP and EPSP-spike coupling in the dentate gyrus in vivo. Brain Struct Funct, doi:org/10.1007/s00429-013-0636-1

    Google Scholar 

  45. Durand CM et al (2008) Alterations in synapsis formation and function in autism disorders. Med Sci 24(1):25–28

    Google Scholar 

  46. Schroer RJ et al (1998) Autism and maternally derived aberrations of chromosome 15q. Am J Med Genet 76(4):327–336

    CAS  PubMed  Google Scholar 

  47. Bolton PF et al (2001) The phenotypic manifestations of interstitial duplications of proximal 15q with special reference to the autistic spectrum disorders. Am J Med Genet 105(8):675–685

    CAS  PubMed  Google Scholar 

  48. Cook EH Jr et al (1998) Linkage-disequilibrium mapping of autistic disorder, with 15q11-13 markers. Am J Hum Genet 62(5):1077–1083

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Urraca N et al (2013) The interstitial duplication 15q11.2-q13 syndrome includes autism, mild facial anomalies and a characteristic EEG signature. Autism Res 6(4):268–279

    PubMed Central  PubMed  Google Scholar 

  50. Takumi T (2011) The neurobiology of mouse models syntenic to human chromosome 15q. J Neurodev Disord 3(3):270–281

    PubMed Central  PubMed  Google Scholar 

  51. Tordjman S et al (2013) Presence of autism, hyperserotonemia, and severe expressive language impairment in Williams-Beuren syndrome. Mol Autism 4(1):29

    PubMed Central  PubMed  Google Scholar 

  52. Mukaddes NM, Herguner S (2007) Autistic disorder and 22q11.2 duplication. World J Biol Psychiatr 8(2):127–130

    Google Scholar 

  53. Niklasson L, Rasmussen P, Oskarsdottir S, Gillberg C (2005) Attention deficits in children with 22q.11 deletion syndrome. Dev Med Child Neurol 47(12):803–807

    PubMed  Google Scholar 

  54. Vorstman JA, Breetvelt EJ, Thode KI, Chow EW, Bassett AS (2013) Expression of autism spectrum and schizophrenia in patients with a 22q11.2 deletion. Schizophr Res 143(1):55–59

    PubMed  Google Scholar 

  55. Depienne C et al (2007) Autism, language delay and mental retardation in a patient with 7q11 duplication. J Med Genet 44(7):452–458

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Depienne C et al (2009) Autism, language delay and mental retardation in a patient with 7q11 duplication. BMJ Case Rep, doi:10.1016/j

  57. Antshel KM et al (2007) Autistic spectrum disorders in velo-cardio facial syndrome (22q11.2 deletion). J Autism Dev Disord 37(9):1776–1786

    PubMed  Google Scholar 

  58. Stone RL et al (1992) A mutation in adenylosuccinate lyase associated with mental retardation and autistic features. Nat Genet 1(1):59–63

    CAS  PubMed  Google Scholar 

  59. Mierzewska H et al (2009) Severe encephalopathy with brain atrophy and hypomyelination due to adenylosuccinate lyase deficiency – MRI, clinical, biochemical and neuropathological findings of Polish patients. Folia Neuropathol 47(4):314–320

    CAS  PubMed  Google Scholar 

  60. Jurecka A, Marucha J, Jurkiewicz E, Rozdzynska-Swiatkowska A, Tylki-Szymanska A (2012) Enzyme replacement therapy in an attenuated case of mucopolysaccharidosis type I (Scheie syndrome): a 6.5-year detailed follow-up. Pediatr Neurol 47(6):461–465

    PubMed  Google Scholar 

  61. Stettner GM, Shoukier M, Hoger C, Brockmann K, Auber B (2011) Familial intellectual disability and autistic behavior caused by a small FMR2 gene deletion. Am J Med Genet A 155A(8):2003–2007

    PubMed  Google Scholar 

  62. Chakrabarti L, Bristulf J, Foss GS, Davies KE (1998) Expression of the murine homologue of FMR2 in mouse brain and during development. Hum Mol Genet 7(3):441–448

    CAS  PubMed  Google Scholar 

  63. Miller WJ, Skinner JA, Foss GS, Davies KE (2000) Localization of the fragile X mental retardation 2 (FMR2) protein in mammalian brain. Eur J Neurosci 12(1):381–384

    CAS  PubMed  Google Scholar 

  64. Mohammadi MR et al (2013) Double-blind, placebo-controlled trial of risperidone plus amantadine in children with autism: a 10-week randomized study. Clin Neuropharmacol 36(6):179–184

    CAS  PubMed  Google Scholar 

  65. Gendron L et al (1999) Signals from the AT2 (angiotensin type 2) receptor of angiotensin II inhibit p21ras and activate MAPK (mitogen-activated protein kinase) to induce morphological neuronal differentiation in NG108-15 cells. Mol Endocrinol 13(9):1615–1626

    CAS  PubMed  Google Scholar 

  66. Cote F, Laflamme L, Payet MD, Gallo-Payet N (1998) Nitric oxide, a new second messenger involved in the action of angiotensin II on neuronal differentiation of NG108-15 cells. Endocr Res 24(3–4):403–407

    CAS  PubMed  Google Scholar 

  67. Wang X, Yang H, Raizada MK (2001) Angiotensin II increases vesicular trafficking in brain neurons. Hypertension 37(2 Pt 2):677–682

    CAS  PubMed  Google Scholar 

  68. Coleman CG, Anrather J, Iadecola C, Pickel VM (2009) Angiotensin II type 2 receptors have a major somatodendritic distribution in vasopressin-containing neurons in the mouse hypothalamic paraventricular nucleus. Neuroscience 163(1):129–142

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Alvarez Retuerto AI et al (2008) Association of common variants in the Joubert syndrome gene (AHI1) with autism. Hum Mol Genet 17(24):3887–3896

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Doering JE et al (2008) Species differences in the expression of Ahi1, a protein implicated in the neurodevelopmental disorder Joubert syndrome, with preferential accumulation to stigmoid bodies. J Comp Neurol 511(2):238–256

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Weng L et al (2013) Loss of Ahi1 affects early development by impairing BM88/Cend1-mediated neuronal differentiation. J Neurosci 33(19):8172–8184

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Mills PB et al (2010) Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency). Brain 133(Pt 7):2148–2159

    PubMed Central  PubMed  Google Scholar 

  73. Jansen LA et al (2014) Glial localization of antiquitin: implications for pyridoxine-dependent epilepsy. Ann Neurol 75(1):22–32

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Sherr EH (2003) The ARX story (epilepsy, mental retardation, autism, and cerebral malformations): one gene leads to many phenotypes. Curr Opin Pediatr 15(6):567–571

    PubMed  Google Scholar 

  75. Yoshihara S, Omichi K, Yanazawa M, Kitamura K, Yoshihara Y (2005) Arx homeobox gene is essential for development of mouse olfactory system. Development 132(4):751–762

    CAS  PubMed  Google Scholar 

  76. Gong X et al (2008) Analysis of X chromosome inactivation in autism spectrum disorders. Am J Med Genet B Neuropsychiatr Genet 147B(6):830–835

    PubMed  Google Scholar 

  77. Shioda N et al (2011) Aberrant calcium/calmodulin-dependent protein kinase II (CaMKII) activity is associated with abnormal dendritic spine morphology in the ATRX mutant mouse brain. J Neurosci 31(1):346–358

    CAS  PubMed  Google Scholar 

  78. Berube NG et al (2005) The chromatin-remodeling protein ATRX is critical for neuronal survival during corticogenesis. J Clin Investig 115(2):258–267

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Zou H et al (2011) Association of upregulated Ras/Raf/ERK1/2 signaling with autism. Gene Brain Behav 10(5):615–624

    CAS  Google Scholar 

  80. Frebel K, Wiese S, Funk N, Puhringer D, Sendtner M (2007) Differential modulation of neurite growth by the S- and the L-forms of bag1, a co-chaperone of Hsp70. Neurodegener Dis 4(2–3):261–269

    CAS  PubMed  Google Scholar 

  81. Yue X, Dreyfus C, Kong TA, Zhou R (2008) A subset of signal transduction pathways is required for hippocampal growth cone collapse induced by ephrin-A5. Dev Neurobiol 68(10):1269–1286

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Splawski I et al (2006) CACNA1H mutations in autism spectrum disorders. J Biol Chem 281(31):22085–22091

    CAS  PubMed  Google Scholar 

  83. Moosmang S et al (2005) Role of hippocampal Cav1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory. J Neurosci 25(43):9883–9892

    CAS  PubMed  Google Scholar 

  84. Myers KR et al (2012) Arf6-GEF BRAG1 regulates JNK-mediated synaptic removal of GluA1-containing AMPA receptors: a new mechanism for nonsyndromic X-linked mental disorder. J Neurosci 32(34):11716–11726

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Myers RA et al (2011) A population genetic approach to mapping neurological disorder genes using deep resequencing. PLoS Genet 7(2):e1001318

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Singh A et al (2006) C-terminal modulator controls Ca2+-dependent gating of Ca(v)1.4 L-type Ca2+ channels. Nat Neurosci 9(9):1108–1116

    CAS  PubMed  Google Scholar 

  87. Stafford RL, Ear J, Knight MJ, Bowie JU (2011) The molecular basis of the Caskin1 and Mint1 interaction with CASK. J Mol Biol 412(1):3–13

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Stafford RL et al (2011) Tandem SAM domain structure of human Caskin1: a presynaptic, self-assembling scaffold for CASK. Structure 19(12):1826–1836

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Corvin AP (2010) Neuronal cell adhesion genes: Key players in risk for schizophrenia, bipolar disorder and other neurodevelopmental brain disorders? Cell Adh Migr 4(4):511–514

    PubMed Central  PubMed  Google Scholar 

  90. Samuels BA et al (2007) Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK. Neuron 56(5):823–837

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Chen K, Featherstone DE (2011) Pre and postsynaptic roles for Drosophila CASK. Mol Cell Neurosci 48(2):171–182

    CAS  PubMed  Google Scholar 

  92. Gillespie JM, Hodge JJ (2013) CASK regulates CaMKII autophosphorylation in neuronal growth, calcium signaling, and learning. Front Mol Neurosci 6:27

    PubMed Central  PubMed  Google Scholar 

  93. Schaaf CP et al (2011) Oligogenic heterozygosity in individuals with high-functioning autism spectrum disorders. Hum Mol Genet 20(17):3366–3375

    CAS  PubMed Central  PubMed  Google Scholar 

  94. White R et al (2010) Cyclin-dependent kinase-like 5 (CDKL5) mutation screening in Rett syndrome and related disorders. Twin Res Hum Genet 13(2):168–178

    PubMed  Google Scholar 

  95. Chen Q et al (2010) CDKL5, a protein associated with rett syndrome, regulates neuronal morphogenesis via Rac1 signaling. J Neurosci 30(38):12777–12786

    CAS  PubMed  Google Scholar 

  96. Ricciardi S et al (2012) CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nat Cell Biol 14(9):911–923

    CAS  PubMed  Google Scholar 

  97. Zhu YC et al (2013) Palmitoylation-dependent CDKL5-PSD-95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development. Proc Natl Acad Sci U S A 110(22):9118–9123

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Coppieters F et al (2010) Genetic screening of LCA in Belgium: predominance of CEP290 and identification of potential modifier alleles in AHI1 of CEP290-related phenotypes. Hum Mutat 31(10):E1709–E1766

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Coppieters F, Lefever S, Leroy BP, De Baere E (2010) CEP290, a gene with many faces: mutation overview and presentation of CEP290base. Hum Mutat 31(10):1097–1108

    CAS  PubMed  Google Scholar 

  100. McEwen DP et al (2007) Hypomorphic CEP290/NPHP6 mutations result in anosmia caused by the selective loss of G proteins in cilia of olfactory sensory neurons. Proc Natl Acad Sci U S A 104(40):15917–15922

    CAS  PubMed Central  PubMed  Google Scholar 

  101. van Daalen E et al (2011) Social Responsiveness Scale-aided analysis of the clinical impact of copy number variations in autism. Neurogenetics 12(4):315–323

    PubMed Central  PubMed  Google Scholar 

  102. Lee S et al (2000) Expression and regulation of a gene encoding neural recognition molecule NB-3 of the contactin/F3 subgroup in mouse brain. Gene 245(2):253–266

    CAS  PubMed  Google Scholar 

  103. Abrahams BS et al (2007) Genome-wide analyses of human perisylvian cerebral cortical patterning. Proc Natl Acad Sci U S A 104(45):17849–17854

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Strauss KA et al (2006) Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N Engl J Med 354(13):1370–1377

    CAS  PubMed  Google Scholar 

  105. Penagarikano O et al (2011) Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 147(1):235–246

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Bel C, Oguievetskaia K, Pitaval C, Goutebroze L, Faivre-Sarrailh C (2009) Axonal targeting of Caspr2 in hippocampal neurons via selective somatodendritic endocytosis. J Cell Sci 122(Pt 18):3403–3413

    CAS  PubMed  Google Scholar 

  107. Barnby G et al (2005) Candidate-gene screening and association analysis at the autism-susceptibility locus on chromosome 16p: evidence of association at GRIN2A and ABAT. Am J Hum Genet 76(6):950–966

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Bourtchouladze R et al (2003) A mouse model of Rubinstein-Taybi syndrome: defective long-term memory is ameliorated by inhibitors of phosphodiesterase 4. Proc Natl Acad Sci U S A 100(18):10518–10522

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Brooks-Kayal A (2011) Molecular mechanisms of cognitive and behavioral comorbidities of epilepsy in children. Epilepsia 52(Suppl 1):13–20

    PubMed Central  PubMed  Google Scholar 

  110. Rao MS, Shetty AK (2004) Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci 19(2):234–246

    PubMed  Google Scholar 

  111. Cai W et al (2012) Rit GTPase signaling promotes immature hippocampal neuronal survival. J Neurosci 32(29):9887–9897

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Sikora J, Harzer K, Elleder M (2007) Neurolysosomal pathology in human prosaposin deficiency suggests essential neurotrophic function of prosaposin. Acta Neuropathol 113(2):163–175

    PubMed Central  PubMed  Google Scholar 

  113. Korade Z, Xu L, Shelton R, Porter NA (2010) Biological activities of 7-dehydrocholesterol-derived oxysterols: implications for Smith-Lemli-Opitz syndrome. J Lipid Res 51(11):3259–3269

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Jiang XS et al (2010) Activation of Rho GTPases in Smith-Lemli-Opitz syndrome: pathophysiological and clinical implications. Hum Mol Genet 19(7):1347–1357

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Waage-Baudet H, Dunty WC Jr, Dehart DB, Hiller S, Sulik KK (2005) Immunohistochemical and microarray analyses of a mouse model for the smith-lemli-opitz syndrome. Dev Neurosci 27(6):378–396

    CAS  PubMed  Google Scholar 

  116. Talkowski ME et al (2011) Assessment of 2q23.1 microdeletion syndrome implicates MBD5 as a single causal locus of intellectual disability, epilepsy, and autism spectrum disorder. Am J Hum Genet 89(4):551–563

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Talkowski ME et al (2012) Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 149(3):525–537

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Balemans MC et al (2014) Reduced Euchromatin histone methyltransferase 1 causes developmental delay, hypotonia, and cranial abnormalities associated with increased bone gene expression in Kleefstra syndrome mice. Dev Biol 386(2):395–407

    CAS  PubMed  Google Scholar 

  119. Balemans MC et al (2013) Hippocampal dysfunction in the Euchromatin histone methyltransferase 1 heterozygous knockout mouse model for Kleefstra syndrome. Hum Mol Genet 22(5):852–866

    CAS  PubMed  Google Scholar 

  120. Wentz E, Vujic M, Karrstedt EL, Erlandsson A, Gillberg C (2014) A case report of two male siblings with autism and duplication of Xq13-q21, a region including three genes predisposing for autism. Eur Child Adolesc Psychiatry 23(5):329–336

    PubMed  Google Scholar 

  121. Umemori H, Linhoff MW, Ornitz DM, Sanes JR (2004) FGF22 and its close relatives are presynaptic organizing molecules in the mammalian brain. Cell 118(2):257–270

    CAS  PubMed  Google Scholar 

  122. Muller Smith K, Williamson TL, Schwartz ML, Vaccarino FM (2012) Impaired motor coordination and disrupted cerebellar architecture in Fgfr1 and Fgfr2 double knockout mice. Brain Res 1460:12–24

    PubMed  Google Scholar 

  123. Hallmayer J et al (1994) Molecular analysis and test of linkage between the FMR-1 gene and infantile autism in multiplex families. Am J Hum Genet 55(5):951–959

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Irwin SA et al (2001) Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet 98(2):161–167

    CAS  PubMed  Google Scholar 

  125. Greenough WT et al (2001) Synaptic regulation of protein synthesis and the fragile X protein. Proc Natl Acad Sci U S A 98(13):7101–7106

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Jacobs S, Doering LC (2010) Astrocytes prevent abnormal neuronal development in the fragile x mouse. J Neurosci 30(12):4508–4514

    CAS  PubMed  Google Scholar 

  127. Berman RF, Murray KD, Arque G, Hunsaker MR, Wenzel HJ (2012) Abnormal dendrite and spine morphology in primary visual cortex in the CGG knock-in mouse model of the fragile X premutation. Epilepsia 53(Suppl 1):150–160

    CAS  PubMed  Google Scholar 

  128. Qin M et al (2011) A mouse model of the fragile X premutation: effects on behavior, dendrite morphology, and regional rates of cerebral protein synthesis. Neurobiol Dis 42(1):85–98

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Pratt DW, Warner JV, Williams MG (2013) Genotyping FOXG1 mutations in patients with clinical evidence of the FOXG1 syndrome. Mol Syndromol 3(6):284–287

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Kumamoto T et al (2013) Foxg1 coordinates the switch from nonradially to radially migrating glutamatergic subtypes in the neocortex through spatiotemporal repression. Cell Rep 3(3):931–945

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Tian P (2012) RELN gene polymorphisms and susceptibility to autism in Chinese Han population. Neurol India 60(6):581–584

    PubMed  Google Scholar 

  132. Chien WH et al (2013) Increased gene expression of FOXP1 in patients with autism spectrum disorders. Mol Autism 4(1):23

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Takahashi K et al (2008) Expression of FOXP2 in the developing monkey forebrain: comparison with the expression of the genes FOXP1, PBX3, and MEIS2. J Comp Neurol 509(2):180–189

    CAS  PubMed  Google Scholar 

  134. Chen Q, Heston JB, Burkett ZD, White SA (2013) Expression analysis of the speech-related genes FoxP1 and FoxP2 and their relation to singing behavior in two songbird species. J Exp Biol 216(Pt 19):3682–3692

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Hisaoka T, Nakamura Y, Senba E, Morikawa Y (2010) The forkhead transcription factors, Foxp1 and Foxp2, identify different subpopulations of projection neurons in the mouse cerebral cortex. Neuroscience 166(2):551–563

    CAS  PubMed  Google Scholar 

  136. Arias-Dimas A, Vilaseca MA, Artuch R, Ribes A, Campistol J (2006) Diagnosis and treatment of brain creatine deficiency syndromes. Rev Neurol 43(5):302–308

    CAS  PubMed  Google Scholar 

  137. Leuzzi V, Mastrangelo M, Battini R, Cioni G (2013) Inborn errors of creatine metabolism and epilepsy. Epilepsia 54(2):217–227

    CAS  PubMed  Google Scholar 

  138. Braissant O, Henry H, Loup M, Eilers B, Bachmann C (2001) Endogenous synthesis and transport of creatine in the rat brain: an in situ hybridization study. Brain Res Mol Brain Res 86(1–2):193–201

    CAS  PubMed  Google Scholar 

  139. Tachikawa M, Fukaya M, Terasaki T, Ohtsuki S, Watanabe M (2004) Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis. Eur J Neurosci 20(1):144–160

    PubMed  Google Scholar 

  140. Romano V et al (2003) Lack of association of HOXA1 and HOXB1 mutations and autism in Sicilian (Italian) patients. Mol Psychiatry 8(8):716–717

    CAS  PubMed  Google Scholar 

  141. Martinez-Ceballos E, Gudas LJ (2008) Hoxa1 is required for the retinoic acid-induced differentiation of embryonic stem cells into neurons. J Neurosci Res 86(13):2809–2819

    CAS  PubMed  Google Scholar 

  142. Gavalas A, Ruhrberg C, Livet J, Henderson CE, Krumlauf R (2003) Neuronal defects in the hindbrain of Hoxa1, Hoxb1 and Hoxb2 mutants reflect regulatory interactions among these Hox genes. Development 130(23):5663–5679

    CAS  PubMed  Google Scholar 

  143. Makki N, Capecchi MR (2011) Identification of novel Hoxa1 downstream targets regulating hindbrain, neural crest and inner ear development. Dev Biol 357(2):295–304

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Yamagata T et al (2002) The human secretin gene: fine structure in 11p15.5 and sequence variation in patients with autism. Genomics 80(2):185–194

    CAS  PubMed  Google Scholar 

  145. Dileone M et al (2010) Enhanced human brain associative plasticity in Costello syndrome. J Physiol 588(Pt 18):3445–3456

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Kushner SA et al (2005) Modulation of presynaptic plasticity and learning by the H-ras/extracellular signal-regulated kinase/synapsin I signaling pathway. J Neurosci 25(42):9721–9734

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Pidsley R, Dempster E, Troakes C, Al-Sarraj S, Mill J (2012) Epigenetic and genetic variation at the IGF2/H19 imprinting control region on 11p15.5 is associated with cerebellum weight. Epigenetics 7(2):155–163

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Pidsley R et al (2012) DNA methylation at the Igf2/H19 imprinting control region is associated with cerebellum mass in outbred mice. Mol Brain 5:42

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Schmeisser MJ et al (2012) IkappaB kinase/nuclear factor kappaB-dependent insulin-like growth factor 2 (Igf2) expression regulates synapse formation and spine maturation via Igf2 receptor signaling. J Neurosci 32(16):5688–5703

    CAS  PubMed  Google Scholar 

  150. Bhat SS et al (2008) Disruption of the IL1RAPL1 gene associated with a pericentromeric inversion of the X chromosome in a patient with mental retardation and autism. Clin Genet 73(1):94–96

    CAS  PubMed  Google Scholar 

  151. Yoshida T et al (2011) IL-1 receptor accessory protein-like 1 associated with mental retardation and autism mediates synapse formation by trans-synaptic interaction with protein tyrosine phosphatase delta. J Neurosci 31(38):13485–13499

    CAS  PubMed  Google Scholar 

  152. Valnegri P et al (2011) The X-linked intellectual disability protein IL1RAPL1 regulates excitatory synapse formation by binding PTPdelta and RhoGAP2. Hum Mol Genet 20(24):4797–4809

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Pavlowsky A et al (2010) A postsynaptic signaling pathway that may account for the cognitive defect due to IL1RAPL1 mutation. Curr Biol 20(2):103–115

    CAS  PubMed  Google Scholar 

  154. Hayashi T, Yoshida T, Ra M, Taguchi R, Mishina M (2013) IL1RAPL1 associated with mental retardation and autism regulates the formation and stabilization of glutamatergic synapses of cortical neurons through RhoA signaling pathway. PloS One 8(6):e66254

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Yoshida T, Mishina M (2008) Zebrafish orthologue of mental retardation protein IL1RAPL1 regulates presynaptic differentiation. Mol Cell Neurosci 39(2):218–228

    CAS  PubMed  Google Scholar 

  156. Epi KC et al (2013) De novo mutations in epileptic encephalopathies. Nature 501(7466):217–221

    Google Scholar 

  157. Murphy JA, Jensen ON, Walikonis RS (2006) BRAG1, a Sec7 domain-containing protein, is a component of the postsynaptic density of excitatory synapses. Brain Res 1120(1):35–45

    CAS  PubMed  Google Scholar 

  158. Sanda M et al (2009) The postsynaptic density protein, IQ-ArfGEF/BRAG1, can interact with IRSp53 through its proline-rich sequence. Brain Res 1251:7–15

    CAS  PubMed  Google Scholar 

  159. Adegbola A, Gao H, Sommer S, Browning M (2008) A novel mutation in JARID1C/SMCX in a patient with autism spectrum disorder (ASD). Am J Med Genet A 146A(4):505–511

    CAS  PubMed  Google Scholar 

  160. Tahiliani M et al (2007) The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature 447(7144):601–605

    CAS  PubMed  Google Scholar 

  161. Kleefstra T et al (2012) Disruption of an EHMT1-associated chromatin-modification module causes intellectual disability. Am J Hum Genet 91(1):73–82

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Amir RE et al (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23(2):185–188

    CAS  PubMed  Google Scholar 

  163. Neul JL (2012) The relationship of Rett syndrome and MECP2 disorders to autism. Dialogues Clin Neurosci 14(3):253–262

    PubMed Central  PubMed  Google Scholar 

  164. Kaufmann WE, MacDonald SM, Altamura CR (2000) Dendritic cytoskeletal protein expression in mental retardation: an immunohistochemical study of the neocortex in Rett syndrome. Cereb Cortex 10(10):992–1004

    CAS  PubMed  Google Scholar 

  165. Marshak S, Meynard MM, De Vries YA, Kidane AH, Cohen-Cory S (2012) Cell-autonomous alterations in dendritic arbor morphology and connectivity induced by overexpression of MeCP2 in Xenopus central neurons in vivo. PloS One 7(3):e33153

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Belichenko PV, Oldfors A, Hagberg B, Dahlstrom A (1994) Rett syndrome: 3-D confocal microscopy of cortical pyramidal dendrites and afferents. Neuroreport 5(12):1509–1513

    CAS  PubMed  Google Scholar 

  167. Chen RZ, Akbarian S, Tudor M, Jaenisch R (2001) Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 27(3):327–331

    CAS  PubMed  Google Scholar 

  168. Stuss DP, Boyd JD, Levin DB, Delaney KR (2012) MeCP2 mutation results in compartment-specific reductions in dendritic branching and spine density in layer 5 motor cortical neurons of YFP-H mice. PloS One 7(3):e31896

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Vonhoff F, Williams A, Ryglewski S, Duch C (2012) Drosophila as a model for MECP2 gain of function in neurons. PloS One 7(2):e31835

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Mikhail FM et al (2011) Clinically relevant single gene or intragenic deletions encompassing critical neurodevelopmental genes in patients with developmental delay, mental retardation, and/or autism spectrum disorders. Am J Med Genet A 155A(10):2386–2396

    PubMed  Google Scholar 

  171. Barbosa AC et al (2008) MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function. Proc Natl Acad Sci U S A 105(27):9391–9396

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Garg S et al (2013) Neurofibromatosis type 1 and autism spectrum disorder. Pediatrics 132(6):e1642–e1648

    PubMed  Google Scholar 

  173. Garg S et al (2013) Autism and other psychiatric comorbidity in neurofibromatosis type 1: evidence from a population-based study. Dev Med Child Neurol 55(2):139–145

    PubMed  Google Scholar 

  174. Marui T et al (2004) Association between the neurofibromatosis-1 (NF1) locus and autism in the Japanese population. Am J Med Genet B Neuropsychiatr Genet 131B(1):43–47

    PubMed  Google Scholar 

  175. Mbarek O et al (1999) Association study of the NF1 gene and autistic disorder. Am J Med Genet 88(6):729–732

    CAS  PubMed  Google Scholar 

  176. Wang HF et al (2011) Valosin-containing protein and neurofibromin interact to regulate dendritic spine density. J Clin Invest 121(12):4820–4837

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Park CS, Zhong L, Tang SJ (2009) Aberrant expression of synaptic plasticity-related genes in the NF1+/− mouse hippocampus. J Neurosci Res 87(14):3107–3119

    CAS  PubMed  Google Scholar 

  178. Buchanan ME, Davis RL (2010) A distinct set of Drosophila brain neurons required for neurofibromatosis type 1-dependent learning and memory. J Neurosci 30(30):10135–10143

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Liu J, Krantz ID (2009) Cornelia de Lange syndrome, cohesin, and beyond. Clin Genet 76(4):303–314

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Liu J et al (2009) Transcriptional dysregulation in NIPBL and cohesin mutant human cells. PLoS Biol 7(5):e1000119

    PubMed Central  PubMed  Google Scholar 

  181. Kawauchi S et al (2009) Multiple organ system defects and transcriptional dysregulation in the Nipbl(+/−) mouse, a model of Cornelia de Lange Syndrome. PLoS Genet 5(9):e1000650

    PubMed Central  PubMed  Google Scholar 

  182. Jamain S et al (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34(1):27–29

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Etherton M et al (2011) Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. Proc Natl Acad Sci U S A 108(33):13764–13769

    CAS  PubMed Central  PubMed  Google Scholar 

  184. Etherton MR, Tabuchi K, Sharma M, Ko J, Sudhof TC (2011) An autism-associated point mutation in the neuroligin cytoplasmic tail selectively impairs AMPA receptor-mediated synaptic transmission in hippocampus. EMBO J 30(14):2908–2919

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Zhang C et al (2009) A neuroligin-4 missense mutation associated with autism impairs neuroligin-4 folding and endoplasmic reticulum export. J Neurosci 29(35):10843–10854

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Buxbaum JD et al (2007) Mutation analysis of the NSD1 gene in patients with autism spectrum disorders and macrocephaly. BMC Med Genet 8:68

    PubMed Central  PubMed  Google Scholar 

  187. Schroer RJ et al (2012) Duplication of OCRL and adjacent genes associated with autism but not Lowe syndrome. Am J Med Genet A 158A(10):2602–2605

    PubMed Central  PubMed  Google Scholar 

  188. Coon BG et al (2012) The Lowe syndrome protein OCRL1 is involved in primary cilia assembly. Hum Mol Genet 21(8):1835–1847

    CAS  PubMed  Google Scholar 

  189. Bruno DL et al (2010) Further molecular and clinical delineation of co-locating 17p13.3 microdeletions and microduplications that show distinctive phenotypes. J Med Genet 47(5):299–311

    CAS  PubMed  Google Scholar 

  190. Kawabata I et al (2012) LIS1-dependent retrograde translocation of excitatory synapses in developing interneuron dendrites. Nat Commun 3:722

    PubMed Central  PubMed  Google Scholar 

  191. Hunt RF, Dinday MT, Hindle-Katel W, Baraban SC (2012) LIS1 deficiency promotes dysfunctional synaptic integration of granule cells generated in the developing and adult dentate gyrus. J Neurosci 32(37):12862–12875

    CAS  PubMed Central  PubMed  Google Scholar 

  192. Piton A et al (2011) Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. Mol Psychiatry 16(8):867–880

    CAS  PubMed Central  PubMed  Google Scholar 

  193. Kaya N et al (2012) A novel X-linked disorder with developmental delay and autistic features. Ann Neurol 71(4):498–508

    CAS  PubMed  Google Scholar 

  194. Govek EE et al (2004) The X-linked mental retardation protein oligophrenin-1 is required for dendritic spine morphogenesis. Nat Neurosci 7(4):364–372

    CAS  PubMed  Google Scholar 

  195. Nakano-Kobayashi A, Kasri NN, Newey SE, Van Aelst L (2009) The Rho-linked mental retardation protein OPHN1 controls synaptic vesicle endocytosis via endophilin A1. Curr Biol 19(13):1133–1139

    CAS  PubMed Central  PubMed  Google Scholar 

  196. Joost K et al (2011) Whole Xp deletion in a girl with mental retardation, epilepsy, and biochemical features of OTC deficiency. Mol Syndromol 1(6):311–315

    CAS  PubMed Central  PubMed  Google Scholar 

  197. Dolman CL, Clasen RA, Dorovini-Zis K (1988) Severe cerebral damage in ornithine transcarbamylase deficiency. Clin Neuropathol 7(1):10–15

    CAS  PubMed  Google Scholar 

  198. Ratnakumari L, Qureshi IA, Butterworth RF (1996) Central muscarinic cholinergic M1 and M2 receptor changes in congenital ornithine transcarbamylase deficiency. Pediatr Res 40(1):25–28

    CAS  PubMed  Google Scholar 

  199. Yu Y et al (2013) Sip1, an AP-1 accessory protein in fission yeast, is required for localization of Rho3 GTPase. PloS One 8(7):e68488

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Huang X et al (2013) The Fas/Fas ligand death receptor pathway contributes to phenylalanine-induced apoptosis in cortical neurons. PloS One 8(8):e71553

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Liang L, Gu X, Lu L, Li D, Zhang X (2011) Phenylketonuria-related synaptic changes in a BTBR-Pah(enu2) mouse model. Neuroreport 22(12):617–622

    PubMed  Google Scholar 

  202. Lu L et al (2011) Mechanisms regulating superoxide generation in experimental models of phenylketonuria: an essential role of NADPH oxidase. Mol Genet Metab 104(3):241–248

    CAS  PubMed  Google Scholar 

  203. Tsai NP et al (2012) Multiple autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold PSD-95. Cell 151(7):1581–1594

    CAS  PubMed Central  PubMed  Google Scholar 

  204. Uemura M, Nakao S, Suzuki ST, Takeichi M, Hirano S (2007) OL-Protocadherin is essential for growth of striatal axons and thalamocortical projections. Nat Neurosci 10(9):1151–1159

    CAS  PubMed  Google Scholar 

  205. van Harssel JJ et al (2013) Clinical and genetic aspects of PCDH19-related epilepsy syndromes and the possible role of PCDH19 mutations in males with autism spectrum disorders. Neurogenetics 14(1):23–34

    CAS  PubMed  Google Scholar 

  206. Hertel N, Redies C (2011) Absence of layer-specific cadherin expression profiles in the neocortex of the reeler mutant mouse. Cereb Cortex 21(5):1105–1117

    PubMed  Google Scholar 

  207. Nava C et al (2012) Analysis of the chromosome X exome in patients with autism spectrum disorders identified novel candidate genes, including TMLHE. Transl Psychiatry 2:e179

    CAS  PubMed Central  PubMed  Google Scholar 

  208. Asensio-Juan E, Gallego C, Martinez-Balbas MA (2012) The histone demethylase PHF8 is essential for cytoskeleton dynamics. Nucleic Acids Res 40(19):9429–9440

    CAS  PubMed Central  PubMed  Google Scholar 

  209. Noor A et al (2010) Disruption at the PTCHD1 Locus on Xp22.11 in Autism spectrum disorder and intellectual disability. Sci Transl Med 2(49):49ra68

    PubMed Central  PubMed  Google Scholar 

  210. Filges I et al (2011) Deletion in Xp22.11: PTCHD1 is a candidate gene for X-linked intellectual disability with or without autism. Clin Genet 79(1):79–85

    CAS  PubMed  Google Scholar 

  211. Butler MG et al (2005) Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J Med Genet 42(4):318–321

    CAS  PubMed Central  PubMed  Google Scholar 

  212. Amiri A et al (2012) Pten deletion in adult hippocampal neural stem/progenitor cells causes cellular abnormalities and alters neurogenesis. J Neurosci 32(17):5880–5890

    CAS  PubMed  Google Scholar 

  213. Takeuchi K et al (2013) Dysregulation of synaptic plasticity precedes appearance of morphological defects in a Pten conditional knockout mouse model of autism. Proc Natl Acad Sci U S A 110(12):4738–4743

    CAS  PubMed Central  PubMed  Google Scholar 

  214. Kwon CH et al (2006) Pten regulates neuronal arborization and social interaction in mice. Neuron 50(3):377–388

    CAS  PubMed Central  PubMed  Google Scholar 

  215. Drinjakovic J et al (2010) E3 ligase Nedd4 promotes axon branching by downregulating PTEN. Neuron 65(3):341–357

    CAS  PubMed Central  PubMed  Google Scholar 

  216. Perandones C et al (2004) Correlation between synaptogenesis and the PTEN phosphatase expression in dendrites during postnatal brain development. Brain Res Mol Brain Res 128(1):8–19

    CAS  PubMed  Google Scholar 

  217. Wenzel A et al (2007) RPE65 is essential for the function of cone photoreceptors in NRL-deficient mice. Invest Ophthalmol Vis Sci 48(2):534–542

    PubMed  Google Scholar 

  218. Zhang L et al (2012) Satb2 is required for dendritic arborization and soma spacing in mouse cerebral cortex. Cereb Cortex 22(7):1510–1519

    PubMed  Google Scholar 

  219. Weiss LA et al (2003) Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Mol Psychiatry 8(2):186–194

    CAS  PubMed  Google Scholar 

  220. Poot M et al (2013) Variable behavioural phenotypes of patients with monosomies of 15q26 and a review of 16 cases. Eur J Med Genet 56(7):346–350

    PubMed  Google Scholar 

  221. Lorincz A, Nusser Z (2010) Molecular identity of dendritic voltage-gated sodium channels. Science 328(5980):906–909

    CAS  PubMed Central  PubMed  Google Scholar 

  222. Han C et al (2012) Nav1.7-related small fiber neuropathy: impaired slow-inactivation and DRG neuron hyperexcitability. Neurology 78(21):1635–1643

    CAS  PubMed  Google Scholar 

  223. Han C et al (2012) Functional profiles of SCN9A variants in dorsal root ganglion neurons and superior cervical ganglion neurons correlate with autonomic symptoms in small fibre neuropathy. Brain 135(Pt 9):2613–2628

    PubMed  Google Scholar 

  224. Han S et al (2012) Autistic-like behaviour in Scn1a+/− mice and rescue by enhanced GABA-mediated neurotransmission. Nature 489(7416):385–390

    CAS  PubMed Central  PubMed  Google Scholar 

  225. Han S et al (2012) Na(V)1.1 channels are critical for intercellular communication in the suprachiasmatic nucleus and for normal circadian rhythms. Proc Natl Acad Sci U S A 109(6):E368–E377

    CAS  PubMed Central  PubMed  Google Scholar 

  226. Berkel S et al (2010) Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat Genet 42(6):489–491

    CAS  PubMed  Google Scholar 

  227. Schmeisser MJ et al (2012) Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 486(7402):256–260

    CAS  PubMed  Google Scholar 

  228. Grabrucker S et al (2014) The PSD protein ProSAP2/Shank3 displays synapto-nuclear shuttling which is deregulated in a schizophrenia-associated mutation. Exp Neurol 253:126–137

    CAS  PubMed  Google Scholar 

  229. Durand CM et al (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39(1):25–27

    CAS  PubMed Central  PubMed  Google Scholar 

  230. Bangash MA et al (2011) Enhanced polyubiquitination of Shank3 and NMDA receptor in a mouse model of autism. Cell 145(5):758–772

    CAS  PubMed Central  PubMed  Google Scholar 

  231. Blaker-Lee A, Gupta S, McCammon JM, De Rienzo G, Sive H (2012) Zebrafish homologs of genes within 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes. Dis Model Mech 5(6):834–851

    CAS  PubMed Central  PubMed  Google Scholar 

  232. Kuhn M, Grave S, Bransfield R, Harris S (2012) Long term antibiotic therapy may be an effective treatment for children co-morbid with Lyme disease and autism spectrum disorder. Med Hypotheses 78(5):606–615

    CAS  PubMed  Google Scholar 

  233. Cai G et al (2008) Multiplex ligation-dependent probe amplification for genetic screening in autism spectrum disorders: efficient identification of known microduplications and identification of a novel microduplication in ASMT. BMC Med Genomics 1:50

    PubMed Central  PubMed  Google Scholar 

  234. Newmeyer A, deGrauw T, Clark J, Chuck G, Salomons G (2007) Screening of male patients with autism spectrum disorder for creatine transporter deficiency. Neuropediatrics 38(6):310–312

    CAS  PubMed  Google Scholar 

  235. Mak CS et al (2009) Immunohistochemical localisation of the creatine transporter in the rat brain. Neuroscience 163(2):571–585

    CAS  PubMed  Google Scholar 

  236. Ilie A, Weinstein E, Boucher A, McKinney RA, Orlowski J (2013) Impaired posttranslational processing and trafficking of an endosomal Na/H exchanger NHE6 mutant (DeltaWST) associated with X-linked intellectual disability and autism. Neurochem Int 73:192–203

    PubMed  Google Scholar 

  237. Garbern JY et al (2010) A mutation affecting the sodium/proton exchanger, SLC9A6, causes mental retardation with tau deposition. Brain 133(Pt 5):1391–1402

    PubMed Central  PubMed  Google Scholar 

  238. Stromme P et al (2011) X-linked Angelman-like syndrome caused by Slc9a6 knockout in mice exhibits evidence of endosomal-lysosomal dysfunction. Brain 134(Pt 11):3369–3383

    PubMed Central  PubMed  Google Scholar 

  239. Yan J et al (2009) Genomic duplication resulting in increased copy number of genes encoding the sister chromatid cohesion complex conveys clinical consequences distinct from Cornelia de Lange. J Med Genet 46(9):626–634

    CAS  PubMed  Google Scholar 

  240. Monnich M, Banks S, Eccles M, Dickinson E, Horsfield J (2009) Expression of cohesin and condensin genes during zebrafish development supports a non-proliferative role for cohesin. Gene Expr Patterns 9(8):586–594

    CAS  PubMed  Google Scholar 

  241. Fassio A et al (2011) SYN1 loss-of-function mutations in autism and partial epilepsy cause impaired synaptic function. Hum Mol Genet 20(12):2297–2307

    CAS  PubMed  Google Scholar 

  242. Baldelli P, Fassio A, Valtorta F, Benfenati F (2007) Lack of synapsin I reduces the readily releasable pool of synaptic vesicles at central inhibitory synapses. J Neurosci 27(49):13520–13531

    CAS  PubMed  Google Scholar 

  243. Lignani G et al (2013) Epileptogenic Q555X SYN1 mutant triggers imbalances in release dynamics and short-term plasticity. Hum Mol Genet 22(11):2186–2199

    CAS  PubMed Central  PubMed  Google Scholar 

  244. Hamdan FF et al (2009) Mutations in SYNGAP1 in autosomal nonsyndromic mental retardation. N Engl J Med 360(6):599–605

    CAS  PubMed Central  PubMed  Google Scholar 

  245. Clement JP et al (2012) Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell 151(4):709–723

    CAS  PubMed Central  PubMed  Google Scholar 

  246. Clement JP, Ozkan ED, Aceti M, Miller CA, Rumbaugh G (2013) SYNGAP1 links the maturation rate of excitatory synapses to the duration of critical-period synaptic plasticity. J Neurosci 33(25):10447–10452

    CAS  PubMed Central  PubMed  Google Scholar 

  247. Chen YZ et al (2012) Evidence for involvement of GNB1L in autism. Am J Med Genet B Neuropsychiatr Genet 159B(1):61–71

    PubMed Central  PubMed  Google Scholar 

  248. Hiramoto T et al (2011) Tbx1: identification of a 22q11.2 gene as a risk factor for autism spectrum disorder in a mouse model. Hum Mol Genet 20(24):4775–4785

    CAS  PubMed Central  PubMed  Google Scholar 

  249. Rendtorff ND et al (2005) Analysis of 65 tuberous sclerosis complex (TSC) patients by TSC2 DGGE, TSC1/TSC2 MLPA, and TSC1 long-range PCR sequencing, and report of 28 novel mutations. Hum Mutat 26(4):374–383

    CAS  PubMed  Google Scholar 

  250. Machado-Salas JP (1984) Abnormal dendritic patterns and aberrant spine development in Bourneville’s disease – a Golgi survey. Clin Neuropathol 3(2):52–58

    CAS  PubMed  Google Scholar 

  251. Takei N et al (2004) Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of translation machinery and protein synthesis in neuronal dendrites. J Neurosci 24(44):9760–9769

    CAS  PubMed  Google Scholar 

  252. Tavazoie SF, Alvarez VA, Ridenour DA, Kwiatkowski DJ, Sabatini BL (2005) Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat Neurosci 8(12):1727–1734

    CAS  PubMed  Google Scholar 

  253. Meikle L et al (2008) Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J Neurosci 28(21):5422–5432

    CAS  PubMed Central  PubMed  Google Scholar 

  254. Bateup HS, Takasaki KT, Saulnier JL, Denefrio CL, Sabatini BL (2011) Loss of Tsc1 in vivo impairs hippocampal mGluR-LTD and increases excitatory synaptic function. J Neurosci 31(24):8862–8869

    CAS  PubMed Central  PubMed  Google Scholar 

  255. Auerbach BD, Osterweil EK, Bear MF (2011) Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature 480(7375):63–68

    CAS  PubMed Central  PubMed  Google Scholar 

  256. Veenstra-VanderWeele J, Gonen D, Leventhal BL, Cook EH Jr (1999) Mutation screening of the UBE3A/E6-AP gene in autistic disorder. Mol Psychiatry 4(1):64–67

    CAS  PubMed  Google Scholar 

  257. Flashner BM, Russo ME, Boileau JE, Leong DW, Gallicano GI (2013) Epigenetic factors and autism spectrum disorders. Neuromol Med 15(2):339–350

    CAS  Google Scholar 

  258. Jay V, Becker LE, Chan FW, Perry TL Sr (1991) Puppet-like syndrome of Angelman: a pathologic and neurochemical study. Neurology 41(3):416–422

    CAS  PubMed  Google Scholar 

  259. Sato M, Stryker MP (2010) Genomic imprinting of experience-dependent cortical plasticity by the ubiquitin ligase gene Ube3a. Proc Natl Acad Sci U S A 107(12):5611–5616

    CAS  PubMed Central  PubMed  Google Scholar 

  260. Dindot SV, Antalffy BA, Bhattacharjee MB, Beaudet Al (2008) The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum Mol Genet 17(1):111–118

    Google Scholar 

  261. Lu Y et al (2009) The Drosophila homologue of the Angelman syndrome ubiquitin ligase regulates the formation of terminal dendritic branches. Hum Mol Genet 18(3):454–462

    CAS  PubMed Central  PubMed  Google Scholar 

  262. Laumonnier F et al (2010) Mutations of the UPF3B gene, which encodes a protein widely expressed in neurons, are associated with nonspecific mental retardation with or without autism. Mol Psychiatry 15(7):767–776

    CAS  PubMed  Google Scholar 

  263. Oortveld MA et al (2013) Human intellectual disability genes form conserved functional modules in Drosophila. PLoS Genet 9(10):e1003911

    PubMed Central  PubMed  Google Scholar 

  264. Capra V et al (2012) Identification of a rare 17p13.3 duplication including the BHLHA9 and YWHAE genes in a family with developmental delay and behavioural problems. BMC Med Genet 13:93

    CAS  PubMed Central  PubMed  Google Scholar 

  265. Curry CJ et al (2013) The duplication 17p13.3 phenotype: analysis of 21 families delineates developmental, behavioral and brain abnormalities, and rare variant phenotypes. Am J Med Genet A 161A(8):1833–1852

    PubMed  Google Scholar 

  266. Pramparo T et al (2011) Global developmental gene expression and pathway analysis of normal brain development and mouse models of human neuronal migration defects. PLoS Genet 7(3):e1001331

    CAS  PubMed Central  PubMed  Google Scholar 

  267. Franceschini A et al (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41(Database issue):D808–D815

    CAS  PubMed Central  PubMed  Google Scholar 

  268. Higginbotham H et al (2012) Arl13b in primary cilia regulates the migration and placement of interneurons in the developing cerebral cortex. Dev Cell 23(5):925–938

    CAS  PubMed Central  PubMed  Google Scholar 

  269. Dimitroff B et al (2012) Diet and energy-sensing inputs affect TorC1-mediated axon misrouting but not TorC2-directed synapse growth in a Drosophila model of tuberous sclerosis. PloS One 7(2):e30722

    CAS  PubMed Central  PubMed  Google Scholar 

  270. Delorme R et al (2013) Progress toward treatments for synaptic defects in autism. Nat Med 19(6):685–694

    CAS  PubMed  Google Scholar 

  271. Kuhl PK (2010) Brain mechanisms in early language acquisition. Neuron 67(5):713–727

    CAS  PubMed Central  PubMed  Google Scholar 

  272. Hensch TK (2005) Critical period mechanisms in developing visual cortex. Curr Top Dev Biol 69:215–237

    CAS  PubMed  Google Scholar 

  273. von Mering C et al (2005) STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res 33(Database issue):D433–D437

    Google Scholar 

  274. Bartsch D, Casadio A, Karl KA, Serodio P, Kandel ER (1998) CREB1 encodes a nuclear activator, a repressor, and a cytoplasmic modulator that form a regulatory unit critical for long-term facilitation. Cell 95(2):211–223

    CAS  PubMed  Google Scholar 

  275. Ozawa K, Uruno T, Miyakawa K, Seo M, Imamura T (1996) Expression of the fibroblast growth factor family and their receptor family genes during mouse brain development. Brain Res Mol Brain Res 41(1–2):279–288

    CAS  PubMed  Google Scholar 

  276. Eom T, Antar LN, Singer RH, Bassell GJ (2003) Localization of a beta-actin messenger ribonucleoprotein complex with zipcode-binding protein modulates the density of dendritic filopodia and filopodial synapses. J Neurosci 23(32):10433–10444

    CAS  PubMed  Google Scholar 

  277. Barker-Haliski ML, Oldenburger K, Keefe KA (2012) Disruption of subcellular Arc/Arg 3.1 mRNA expression in striatal efferent neurons following partial monoamine loss induced by methamphetamine. J Neurochem 123(5):845–855

    CAS  PubMed Central  PubMed  Google Scholar 

  278. Barker-Haliski ML, Pastuzyn ED, Keefe KA (2012) Expression of the core exon-junction complex factor eukaryotic initiation factor 4A3 is increased during spatial exploration and striatally-mediated learning. Neuroscience 226:51–61

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre L. Roubertoux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Roubertoux, P.L., Tordjman, S. (2015). The Autistic Spectrum Disorders (ASD): From the Clinics to the Molecular Analysis. In: Roubertoux, P. (eds) Organism Models of Autism Spectrum Disorders. Neuromethods, vol 100. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2250-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2250-5_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2249-9

  • Online ISBN: 978-1-4939-2250-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics