Skip to main content

Maintaining Mice for Neurobehavioral Examination

  • Protocol
  • First Online:
Organism Models of Autism Spectrum Disorders

Part of the book series: Neuromethods ((NM,volume 100))

Abstract

Stringent conditions are required to maintain mice for experimental research. They are presented in guidelines for housing mice. Housing mice for behavioral or neurophysiological experiments requires specific adjustments. This chapter addresses the following questions. Does the ventilation system or the available ground surface impact behavioral measures? Does enriched environment modulate cognitive processes or anxiety? Handling is recommended preliminarily to experiment by several authors. Have handling or gentling an impact on behavioral processes? What are the consequences of social deprivation that is applied very often for technical reasons? Ear punch, tattooing, or tagging: What is the best solution to identify the mouse in behavioral research?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Logge W, Kingham J, Karl T (2013) Behavioural consequences of IVC cages on male and female C57BL/6 J mice. Neuroscience 237:285–293

    Article  CAS  PubMed  Google Scholar 

  2. Olsson IA, Dahlborn K (2002) Improving housing conditions for laboratory mice: a review of “environmental enrichment”. Lab Anim 36(3):243–270

    Article  CAS  PubMed  Google Scholar 

  3. Restivo L et al (2005) Enriched environment promotes behavioral and morphological recovery in a mouse model for the fragile X syndrome. Proc Natl Acad Sci U S A 102(32):11557–11562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lopez-Atalaya JP et al (2011) CBP is required for environmental enrichment-induced neurogenesis and cognitive enhancement. EMBO J 30(20):4287–4298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Cirulli F et al (2010) Early life influences on emotional reactivity: evidence that social enrichment has greater effects than handling on anxiety-like behaviors, neuroendocrine responses to stress and central BDNF levels. Neurosci Biobehav Rev 34(6):808–820

    Article  CAS  PubMed  Google Scholar 

  6. Cirulli F, Capone F, Bonsignore LT, Aloe L, Alleva E (2007) Early behavioural enrichment in the form of handling renders mouse pups unresponsive to anxiolytic drugs and increases NGF levels in the hippocampus. Behav Brain Res 178(2):208–215

    Article  CAS  PubMed  Google Scholar 

  7. Kramer K et al (2004) Effect of conditioning on the increase of heart rate and body temperature provoked by handling in the mouse. Altern Lab Anim 32(Suppl 1A):177–181

    CAS  PubMed  Google Scholar 

  8. Clement JG, Mills P, Brockway B (1989) Use of telemetry to record body temperature and activity in mice. J Pharmacol Methods 21(2):129–140

    Article  CAS  PubMed  Google Scholar 

  9. Ryabinin AE, Wang YM, Finn DA (1999) Different levels of Fos immunoreactivity after repeated handling and injection stress in two inbred strains of mice. Pharmacol Biochem Behav 63(1):143–151

    Article  CAS  PubMed  Google Scholar 

  10. Irwin J, Ahluwalia P, Zacharko RM, Anisman H (1986) Central norepinephrine and plasma corticosterone following acute and chronic stressors: influence of social isolation and handling. Pharmacol Biochem Behav 24(4):1151–1154

    Article  CAS  PubMed  Google Scholar 

  11. Heredia L, Torrente M, Domingo JL, Colomina MT (2012) Individual housing and handling procedures modify anxiety levels of Tg2576 mice assessed in the zero maze test. Physiol Behav 107(2):187–191

    Article  CAS  PubMed  Google Scholar 

  12. D’Amato FR, Cabib S, Ventura R, Orsini C (1998) Long-term effects of postnatal manipulation on emotionality are prevented by maternal anxiolytic treatment in mice. Dev Psychobiol 32(3):225–234

    Article  PubMed  Google Scholar 

  13. Deacon RM (2006) Housing, husbandry and handling of rodents for behavioral experiments. Nat Protoc 1(2):936–946

    Article  PubMed  Google Scholar 

  14. Zaharia MD, Kulczycki J, Shanks N, Meaney MJ, Anisman H (1996) The effects of early postnatal stimulation on Morris water-maze acquisition in adult mice: genetic and maternal factors. Psychopharmacology 128(3):227–239

    Article  CAS  PubMed  Google Scholar 

  15. Hurst JL, West RS (2010) Taming anxiety in laboratory mice. Nat Methods 7(10):825–826

    Article  CAS  PubMed  Google Scholar 

  16. Gouveia K, Hurst JL (2013) Reducing mouse anxiety during handling: effect of experience with handling tunnels. PLoS One 8(6):e66401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Baumans V, Schlingmann F, Vonck M, van Lith HA (2002) Individually ventilated cages: beneficial for mice and men? Contemp Top Lab Anim Sci 41(1):13–19

    PubMed  Google Scholar 

  18. Kallnik M et al (2007) Impact of IVC housing on emotionality and fear learning in male C3HeB/FeJ and C57BL/6 J mice. Mamm Genome 18(3):173–186

    Article  PubMed  Google Scholar 

  19. Kostomitsopoulos N et al (2012) The effects of different types of individually ventilated caging systems on growing male mice. Lab Anim 41(7):192–197

    Article  Google Scholar 

  20. Tsai PP, Oppermann D, Stelzer HD, Mahler M, Hackbarth H (2003) The effects of different rack systems on the breeding performance of DBA/2 mice. Lab Anim 37(1):44–53

    Article  CAS  PubMed  Google Scholar 

  21. York JM et al (2012) Individually ventilated cages cause chronic low-grade hypoxia impacting mice hematologically and behaviorally. Brain Behav Immun 26(6):951–958

    Article  PubMed Central  PubMed  Google Scholar 

  22. Abramov U, Kurrikoff K, Matsui T, Vasar E (2009) Environmental enrichment reduces mechanical hypersensitivity in neuropathic mice, but fails to abolish the phenotype of CCK2 receptor deficient mice. Neurosci Lett 467(3):230–233

    Article  CAS  PubMed  Google Scholar 

  23. Abramov U, Puussaar T, Raud S, Kurrikoff K, Vasar E (2008) Behavioural differences between C57BL/6 and 129S6/SvEv strains are reinforced by environmental enrichment. Neurosci Lett 443(3):223–227

    Article  CAS  PubMed  Google Scholar 

  24. Chourbaji S et al (2008) Nature vs. nurture: can enrichment rescue the behavioural phenotype of BDNF heterozygous mice? Behav Brain Res 192(2):254–258

    Article  CAS  PubMed  Google Scholar 

  25. Chourbaji S et al (2012) The impact of environmental enrichment on sex-specific neurochemical circuitries—effects on brain-derived neurotrophic factor and the serotonergic system. Neuroscience 220:267–276

    Article  CAS  PubMed  Google Scholar 

  26. Costa DA et al (2007) Enrichment improves cognition in AD mice by amyloid-related and unrelated mechanisms. Neurobiol Aging 28(6):831–844

    Article  CAS  PubMed  Google Scholar 

  27. Hattori S et al (2007) Enriched environments influence depression-related behavior in adult mice and the survival of newborn cells in their hippocampi. Behav Brain Res 180(1):69–76

    Article  PubMed  Google Scholar 

  28. Abramov U et al (2008) Different housing conditions alter the behavioural phenotype of CCK(2) receptor-deficient mice. Behav Brain Res 193(1):108–116

    Article  CAS  PubMed  Google Scholar 

  29. Kazlauckas V et al (2011) Enriched environment effects on behavior, memory and BDNF in low and high exploratory mice. Physiol Behav 102(5):475–480

    Article  CAS  PubMed  Google Scholar 

  30. Kondo M et al (2008) Environmental enrichment ameliorates a motor coordination deficit in a mouse model of Rett syndrome–Mecp2 gene dosage effects and BDNF expression. Eur J Neurosci 27(12):3342–3350

    Article  PubMed  Google Scholar 

  31. Kulesskaya N, Rauvala H, Voikar V (2011) Evaluation of social and physical enrichment in modulation of behavioural phenotype in C57BL/6 J female mice. PLoS One 6(9):e24755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Lambert TJ, Fernandez SM, Frick KM (2005) Different types of environmental enrichment have discrepant effects on spatial memory and synaptophysin levels in female mice. Neurobiol Learn Mem 83(3):206–216

    Article  CAS  PubMed  Google Scholar 

  33. Lee MY et al (2013) Alteration of synaptic activity-regulating genes underlying functional improvement by long-term exposure to an enriched environment in the adult brain. Neurorehabil Neural Repair 27(6):561–574

    Article  PubMed  Google Scholar 

  34. Leger M et al (2012) Environmental enrichment improves recent but not remote memory in association with a modified brain metabolic activation profile in adult mice. Behav Brain Res 228(1):22–29

    Article  PubMed  Google Scholar 

  35. Leger M et al (2012) Environmental enrichment enhances episodic-like memory in association with a modified neuronal activation profile in adult mice. PLoS One 7(10):e48043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Maruoka T, Kodomari I, Yamauchi R, Wada E, Wada K (2009) Maternal enrichment affects prenatal hippocampal proliferation and open-field behaviors in female offspring mice. Neurosci Lett 454(1):28–32

    Article  CAS  PubMed  Google Scholar 

  37. McQuaid RJ, Audet MC, Anisman H (2012) Environmental enrichment in male CD-1 mice promotes aggressive behaviors and elevated corticosterone and brain norepinephrine activity in response to a mild stressor. Stress 15(3):354–360

    CAS  PubMed  Google Scholar 

  38. McQuaid RJ, Audet MC, Jacobson-Pick S, Anisman H (2013) The differential impact of social defeat on mice living in isolation or groups in an enriched environment: plasma corticosterone and monoamine variations. Int J Neuropsychopharmacol 16(2):351–363

    Article  CAS  PubMed  Google Scholar 

  39. Mustroph ML, Stobaugh DJ, Miller DS, DeYoung EK, Rhodes JS (2011) Wheel running can accelerate or delay extinction of conditioned place preference for cocaine in male C57BL/6 J mice, depending on timing of wheel access. Eur J Neurosci 34(7):1161–1169

    Article  PubMed Central  PubMed  Google Scholar 

  40. Nader J et al (2014) Loss of environmental enrichment increases vulnerability to cocaine addiction. Neuropsychopharmacology 39(3):780

    Article  PubMed Central  PubMed  Google Scholar 

  41. Reynolds S, Urruela M, Devine DP (2013) Effects of environmental enrichment on repetitive behaviors in the BTBR T + tf/J mouse model of autism. Autism Res 6(5):337–343

    Article  PubMed Central  PubMed  Google Scholar 

  42. Swetter BJ, Karpiak CP, Cannon JT (2011) Separating the effects of shelter from additional cage enhancements for group-housed BALB/cJ mice. Neurosci Lett 495(3):205–209

    Article  CAS  PubMed  Google Scholar 

  43. Workman JL, Fonken LK, Gusfa J, Kassouf KM, Nelson RJ (2011) Post-weaning environmental enrichment alters affective responses and interacts with behavioral testing to alter nNOS immunoreactivity. Pharmacol Biochem Behav 100(1):25–32

    Article  CAS  PubMed  Google Scholar 

  44. Zhu SW et al (2006) Influence of differential housing on emotional behaviour and neurotrophin levels in mice. Behav Brain Res 169(1):10–20

    Article  CAS  PubMed  Google Scholar 

  45. Zhu SW et al (2009) Influence of environmental manipulation on exploratory behaviour in male BDNF knockout mice. Behav Brain Res 197(2):339–346

    Article  CAS  PubMed  Google Scholar 

  46. Xu Z, Hou B, Gao Y, He F, Zhang C (2007) Effects of enriched environment on morphine-induced reward in mice. Exp Neurol 204(2):714–719

    Article  CAS  PubMed  Google Scholar 

  47. Berry A et al (2012) Social deprivation stress is a triggering factor for the emergence of anxiety- and depression-like behaviours and leads to reduced brain BDNF levels in C57BL/6 J mice. Psychoneuroendocrinology 37(6):762–772

    Article  CAS  PubMed  Google Scholar 

  48. Kaushal N, Nair D, Gozal D, Ramesh V (2012) Socially isolated mice exhibit a blunted homeostatic sleep response to acute sleep deprivation compared to socially paired mice. Brain Res 1454:65–79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Okuda H et al (2009) Environmental enrichment stimulates progenitor cell proliferation in the amygdala. J Neurosci Res 87(16):3546–3553

    Article  CAS  PubMed  Google Scholar 

  50. Ros-Simo C, Valverde O (2012) Early-life social experiences in mice affect emotional behaviour and hypothalamic-pituitary-adrenal axis function. Pharmacol Biochem Behav 102(3):434–441

    Article  CAS  PubMed  Google Scholar 

  51. Volden PA et al (2013) Chronic social isolation is associated with metabolic gene expression changes specific to mammary adipose tissue. Cancer Prev Res 6(7):634–645

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre L. Roubertoux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Roubertoux, P.L. (2015). Maintaining Mice for Neurobehavioral Examination. In: Roubertoux, P. (eds) Organism Models of Autism Spectrum Disorders. Neuromethods, vol 100. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2250-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2250-5_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2249-9

  • Online ISBN: 978-1-4939-2250-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics