Skip to main content

Location Analysis and Expression Profiling Using Next-Generation Sequencing for Research in Neurodegenerative Diseases

  • Protocol
  • First Online:
  • 712 Accesses

Part of the book series: Neuromethods ((NM,volume 97))

Abstract

Neurodegenerative diseases carry a huge burden in terms of human suffering and economic cost. In spite of advances in the field of neurology, there is still no effective cure. A combination of novel genomic approaches and techniques such as chromatin immunoprecipitation sequencing (ChIP-seq) and RNA-seq that enable high-quality data could provide better understanding of transcriptional and epigenetic signatures useful for both biomarker development and drug discovery in neurodegenerative diseases. This chapter provides detailed protocols of the different steps required to generate a successful ChIP-seq and RNA-seq library. ChIP-seq protocol starts with cell collection and fixation, chromatin preparation, immunoprecipitation, and finally library preparation. RNA-seq protocol described in this chapter starts with the isolation of peripheral blood mononuclear cells (PBMCs), RNA isolation from cells, and library preparation. The ChIP-seq protocol is optimized for human neuroglioma cells (H4), and RNA-seq protocol is optimized for PBMCs, but both protocols can be adapted to different cell types with minor modifications. The obtained libraries are suitable for sequencing on Illumina GAIIx platform.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  • Anderson AN, Roncaroli F, Hodges A, et al. Chromosomal profiles of gene expression in Huntington's disease. Brain. 2008;131(Pt 2):381–8.

    Article  PubMed  Google Scholar 

  • Cao X, Yeo G, Muotri AR, et al. Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci. 2006;29:77–103.

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi RK, Hennessey T, Johri A, et al. Transducer of regulated CREB-binding proteins (TORCs) transcription and function is impaired in Huntington's disease. Hum Mol Genet. 2012;21:3474–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cui L, Jeong H, Borovecki F, et al. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell. 2006;127:59–69.

    Article  CAS  PubMed  Google Scholar 

  • Desjardins S, Belkai E, Crete D, et al. Effects of chronic morphine and morphine withdrawal on gene expression in rat peripheral blood mononuclear cells. Neuropharmacology. 2008;55:1347–54.

    Article  CAS  PubMed  Google Scholar 

  • Euskirchen GM, Rozowsky JS, Wie CL, et al. Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of array‐ and sequencing‐based technologies. Genome Res. 2007;6:898–909.

    Article  Google Scholar 

  • Issidorides MR, Stefanis CN, Varsou E, et al. Altered chromatin ultrastructure in neutrophils of schizophrenics. Nature. 1975;258:612–4.

    Article  CAS  PubMed  Google Scholar 

  • Khoo SK, Petillo D, Kang UJ, et al. Plasma-based circulating microRNA biomarkers for Parkinson’s disease. J Parkinsons Dis. 2012;2(4):321–31.

    CAS  PubMed  Google Scholar 

  • Li X, Khanna A, Li N, et al. Circulatory miR34a as an RNAbased, noninvasive biomarker for brain aging. Aging. 2011;3:985–1002.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martins M, Rosa A, Guedes LC, et al. Convergence of miRNA expression profiling, α-synuclein interacton and GWAS in Parkinson’s disease. PLoS One. 2011. doi:10.1371/journal.pone.0025443.

    Google Scholar 

  • Provencal N, Suderman MJ, Guillemin C, et al. The signature of maternal rearing in the methylome in rhesus macaque prefrontal cortex and T cells. J Neurosci. 2012;32:15626–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Satoh J, Kawana N, Yamamoto Y. Pathway analysis of ChIP-Seq-based NRF1 target genes suggests a logical hypothesis of their involvement in the pathogenesis of neurodegenerative diseases. Gene Regul Syst Bio. 2013;7:139–52.

    Article  PubMed Central  PubMed  Google Scholar 

  • Siddiqui A, Chinta SJ, Mallajosyula JK, et al. Selective binding of nuclear alpha-synuclein to the PGC1alpha promoter under conditions of oxidative stress may contribute to losses in mitochondrial function: implications for Parkinson’s disease. Free Radic Biol Med. 2012;53:993–1003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sullivan PF, Fan C, Perou CM. Evaluating the comparability of gene expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet. 2006;141B:261–8.

    Article  PubMed  Google Scholar 

  • Ursini G, Bollati V, Fazio L, et al. Stress-related methylation of the catechol-O-methyltransferase Val 158 allele predicts human prefrontal cognition and activity. J Neurosci. 2011;31:6692–8.

    Article  CAS  PubMed  Google Scholar 

  • Weinmann AS, Farnham PJ. Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods. 2002;26:37–47.

    Article  CAS  PubMed  Google Scholar 

  • Wells J, Farnham PJ. Characterizing transcription factor binding sites using formaldehyde crosslinking and immunoprecipitation. Methods. 2002;26:48–56.

    Article  CAS  PubMed  Google Scholar 

  • Yacoubian TA, Cantuti-Castelvetri I, Bouzou B, et al. Transcriptional dysregulation in a transgenic model of Parkinson disease. Neurobiol Dis. 2008;29:515–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yuferov V, Nielsen DA, Levran O, et al. Tissue-specific DNA methylation of the human prodynorphin gene in post-mortem brain tissues and PBMCs. Pharmacogenet Genomics. 2011;21:185–96.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Habek M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gotovac, K., Borovečki, F., Habek, M. (2015). Location Analysis and Expression Profiling Using Next-Generation Sequencing for Research in Neurodegenerative Diseases. In: Jain, K. (eds) Applied Neurogenomics. Neuromethods, vol 97. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2247-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2247-5_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2246-8

  • Online ISBN: 978-1-4939-2247-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics