Skip to main content

An Overview of Methods Used in Neurogenomics and Their Applications

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 97))

Abstract

This chapter is an introduction to and an overview of neurogenomics—an analysis of genes in the nervous system and their application for diagnosis as well as potential therapeutics of disorders of the nervous system. The most important technologies are those for sequencing. Traditional as well as new techniques are described briefly including next-generation sequencing. Important applications include discovery of genomic biomarkers, brain mapping as well as connectomics, molecular diagnostics, drug discovery, and potential new therapeutics for neurologic disorders. Knowledge of the genes relevant to the nervous system will improve gene therapies and RNA interference approaches for neurologic disorders. Overall it will contribute to development of personalized neurology.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

NGS:

Next-generation sequencing

WGS:

Whole-genome sequencing

WES:

Whole-exome sequencing

CNV:

Copy number variation

SNP:

Single-nucleotide polymorphism

SMS:

Single-molecule sequencing

References

  • Al-Baradie RS. Dravet syndrome, what is new? Neurosciences (Riyadh). 2013;18(1):11–7.

    Google Scholar 

  • An N, Fleming AM, White HS, Burrows CJ. Crown ether-electrolyte interactions permit nanopore detection of individual DNA abasic sites in single molecules. Proc Natl Acad Sci U S A. 2012;109:11504–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson BN, Muthukumar M, Meller A. pH tuning of DNA translocation time through organically functionalized nanopores. ACS Nano. 2013;7:1408–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anonymous. Method of the year 2013 (editorial). Nat Methods. 2014;11:1.

    Google Scholar 

  • Basu SN, Kollu R, Banerjee-Basu S. AutDB: a gene reference resource for autism research. Nucleic Acids Res. 2009;37(Database issue):D832–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bennett J, Hahn SH. Clinical molecular diagnosis of Wilson disease. Semin Liver Dis. 2011;31: 233–8.

    Article  CAS  PubMed  Google Scholar 

  • Bertram L, Lill CM, Tanzi RE. The genetics of Alzheimer disease: back to the future. Neuron. 2010;68:270–81.

    Article  CAS  PubMed  Google Scholar 

  • Blaese RM, Culver KW, Anderson WF. The ADA human gene therapy protocol. Hum Gene Ther. 1990;1:331–62.

    Article  PubMed  Google Scholar 

  • Blair DR, Lyttle CS, Mortensen JM, et al. A nondegenerate code of deleterious variants in Mendelian loci contributes to complex disease risk. Cell. 2013;155:70–80.

    Article  CAS  PubMed  Google Scholar 

  • Bras JM, Singleton AB. Exome sequencing in Parkinson’s disease. Clin Genet. 2011;80:104–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bryant C, Giovanello KS, Ibrahim JG, et al. Mapping the genetic variation of regional brain volumes as explained by all common SNPs from the ADNI study. PLoS One. 2013;8(8):e71723.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang S, Huang S, He J, et al. Electronic signatures of all four DNA nucleosides in a tunneling gap. Nano Lett. 2010;10:1070–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clarke J, Wu HC, Jayasinghe L, et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol. 2009;4:265–70.

    Article  CAS  PubMed  Google Scholar 

  • Cockroft SL, Chu J, Amorin M, Ghadiri MR. A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J Am Chem Soc. 2008;130:818–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen SN, Chang AC, Hsu L. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A. 1972;69:2110–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Costello M, Pugh TJ, Fennell TJ, et al. Discovery and characterization of artifactual mutations in deep coverage targeted capture sequencing data due to oxidative DNA damage during sample preparation. Nucleic Acids Res. 2013;41:e67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cross-Disorder Group of the Psychiatric Genomics Consortium, Genetic Risk Outcome of Psychosis (GROUP) Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381:1371–9.

    Article  PubMed Central  Google Scholar 

  • Csaki A, Garwe F, Steinbrück A, et al. A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas. Nano Lett. 2007;7:247–53.

    Article  CAS  PubMed  Google Scholar 

  • de Ligt J, Willemsen MH, van Bon BW, et al. Diagnostic exome sequencing in persons with severe intellectual disability. NEJM. 2012;367:1921–9.

    Article  PubMed  Google Scholar 

  • Derrington IM, Butler TZ, Collins MD, et al. Nanopore DNA sequencing with MspA. PNAS. 2010;107:16060–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dolled-Filhart MP, Lee Jr M, Ou-Yang CW, et al. Computational and bioinformatics frameworks for next-generation whole exome and genome sequencing. Sci World J. 2013;2013:730210. doi:10.1155/2013/730210.

    Article  Google Scholar 

  • Eid J, Fehr A, Gray J, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133–8.

    Article  CAS  PubMed  Google Scholar 

  • Epi4K Consortium, Epilepsy Phenome/Genome Project, Allen AS, Berkovic SF, Cossette P, et al. De novo mutations in epileptic encephalopathies. Nature. 2013;501:217–21.

    Article  CAS  PubMed  Google Scholar 

  • Esfandyarpour H, Zheng B, Pease RF, Davis RW. Structural optimization for heat detection of DNA thermosequencing platform using finite element analysis. Biomicrofluidics. 2008;2:24102.

    Article  PubMed  Google Scholar 

  • Ezkurdia I, Juan D, Rodriguez J, et al. Multiple evidence strands suggest that there may be as few as 19000 human protein-coding genes. Hum Mol Genet. 2014;23:5866–78.

    Google Scholar 

  • Fan HC, Gu W, Wang J, et al. Non-invasive prenatal measurement of the fetal genome. Nature. 2012;487:320–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feero WG, Guttmacher AE, Collins FS. Genomic medicine – an updated primer. N Engl J Med. 2010;362:2001–11.

    Article  CAS  PubMed  Google Scholar 

  • Feng L, Liu H, Liu Y, et al. Power of deep sequencing and agilent microarray for gene expression profiling study. Mol Biotechnol. 2010;45:101–10.

    Article  CAS  PubMed  Google Scholar 

  • Flusberg BA, Webster DR, Lee JH, et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods. 2010;7:461–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ghosal S. Effect of salt concentration on the electrophoretic speed of a polyelectrolyte through a nanopore. Phys Rev Lett. 2007;98:238104.

    Article  PubMed  Google Scholar 

  • Girirajan S, Rosenfeld JA, Coe BP, et al. Phenotypic heterogeneity of genomic disorders and rare copy-number variants. N Engl J Med. 2012;367:1321–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gratten J, Wray NR, Keller MC, Visscher PM. Large-scale genomics unveils the genetic architecture of psychiatric disorders. Nat Neurosci. 2014;17:782–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guerreiro R, Wojtas A, Bras J, et al. TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013;368:117–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gusella JF, Wexler NS, Conneally PM, et al. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature. 1983;306:234–8.

    Article  CAS  PubMed  Google Scholar 

  • Han G, Sun J, Wang J, et al. Genomics in neurological disorders. Genomics Proteomics Bioinformatics. 2014;12:156–63.

    Google Scholar 

  • Hoffman EP, Brown RH, Kunkel LM. Dystrophin: the protein product on Duchenne muscular dystrophy locus. Cell. 1987;51:919–28.

    Article  CAS  PubMed  Google Scholar 

  • Itan Y, Zhang SY, Vogt G, et al. The human gene connectome as a map of short cuts for morbid allele discovery. Proc Natl Acad Sci USA. 2013;110:5558–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jahanshad N, Rajagopalan P, Hua X, et al. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity. Proc Natl Acad Sci U S A. 2013;110:4768–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jain KK. Applied neurogenomics. Pharmacogenomics. 2001;2:143–53.

    Article  CAS  PubMed  Google Scholar 

  • Jain KK. A handbook of biomarkers. New York: Springer; 2010.

    Book  Google Scholar 

  • Jain KK. Biochips/microarrays. Basel, Switzerland: Jain PharmaBiotech; 2014a.

    Google Scholar 

  • Jain KK. DNA sequencing. Basel: Jain PharmaBiotech; 2014b.

    Google Scholar 

  • Jain KK. Proteomics. Basel, Switzerland: Jain PharmaBiotech; 2014c.

    Google Scholar 

  • Kaper F, Swamy S, Klotzle B, et al. Whole-genome haplotyping by dilution, amplification, and sequencing. Proc Natl Acad Sci USA. 2013;110:5552–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kitzman JO, Mackenzie AP, Adey A, et al. Haplotype-resolved genome sequencing of a Gujarati Indian individual. Nat Biotechnol. 2011;29:59–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuska B. Beer, Bethesda, and biology: how “genomics” came into being. J Natl Cancer Inst. 1998;90:93.

    Article  CAS  PubMed  Google Scholar 

  • Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45:1452–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Landouré G, Sullivan JM, Johnson JO, et al. Exome sequencing identifies a novel TRPV4 mutation in a CMT2C family. Neurology. 2012;79:192–4.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lao KQ, Tang F, Barbacioru C, et al. mRNA-sequencing whole transcriptome analysis of a single cell on the SOLiD system. J Biomol Tech. 2009;20:266–71.

    PubMed Central  PubMed  Google Scholar 

  • Leidinger P, Backes C, Deutscher S, et al. A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol. 2013;14:R78.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lencz T, Guha S, Liu C, et al. Genome-wide association study implicates NDST3 in schizophrenia and bipolar disorder. Nat Commun. 2013;4:2739.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lill CM. Recent advances and future challenges in the genetics of multiple sclerosis. Front Neurol. 2014;5:130.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lister R, Mukamel EA, Nery JR, et al. Global epigenomic reconfiguration during mammalian brain development. Science. 2013;341:1237905.

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu H, He J, Tang J, et al. Translocation of single-stranded DNA through single-walled carbon nanotubes. Science. 2010;327:64–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lupski JR, Reid JG, Gonzaga-Jauregui C, et al. Whole-genome sequencing in a patient with Charcot-Marie-tooth neuropathy. NEJM. 2010;362:1181–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maat J, Smith AJ. A method for sequencing restriction fragments with dideoxynucleoside triphosphates. Nucleic Acids Res. 1978;5:4537–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Magri F, Del Bo R, D’Angelo MG, et al. Clinical and molecular characterization of a cohort of patients with novel nucleotide alterations of the Dystrophin gene detected by direct sequencing. BMC Med Genet. 2011;12:37.

    Google Scholar 

  • Manrao EA, Derrington IM, Laszlo AH, et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat Biotechnol. 2012;30:349–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matuszek G, Talebizadeh Z. Autism Genetic Database (AGD): a comprehensive database including autism susceptibility gene-CNVs integrated with known noncoding RNAs and fragile sites. BMC Med Genet. 2009;10:102.

    Article  PubMed Central  PubMed  Google Scholar 

  • McCaughan F, Dear PH. Single-molecule genomics. J Pathol. 2010;220:297–306.

    CAS  PubMed  Google Scholar 

  • Medland SE, Jahanshad N, Neale BM, Thompson PM. Whole-genome analyses of whole-brain data: working within an expanded search space. Nat Neurosci. 2014;17:791–800.

    Article  CAS  PubMed  Google Scholar 

  • Mefford HC. Diagnostic exome sequencing –are we there yet? NEJM. 2012;367:1951–3.

    Article  CAS  PubMed  Google Scholar 

  • Mende S, Storch A, Reichmann H. Gene expression profiling of classic mitochondrial disorders. Its value in finding therapeutic strategies. Nervenarzt. 2007;78:1155–9.

    Article  CAS  PubMed  Google Scholar 

  • Metzker ML. Sequencing technologies – the next generation. Nat Rev Genet. 2010;11:31–46.

    Article  CAS  PubMed  Google Scholar 

  • Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):263–73.

    Article  CAS  PubMed  Google Scholar 

  • Németh AH, Kwasniewska AC, Lise S, et al. Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model. Brain. 2013;136:3106–18.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ng SB, Turner EH, Robertson PD, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461:272–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975;250:4007–21.

    PubMed Central  PubMed  Google Scholar 

  • Oksenberg JR. Decoding multiple sclerosis: an update on genomics and future directions. Expert Rev Neurother. 2013;13(12 Suppl):11–9.

    Article  PubMed  Google Scholar 

  • Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet. 2011;12:87–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parikshak NN, Luo R, Zhang A, et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell. 2013;155:1008–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petrovski S, Kwan P. Unraveling the genetics of common epilepsies: approaches, platforms, and caveats. Epilepsy Behav. 2013;26:229–33.

    Article  PubMed  Google Scholar 

  • Pinto D, Pagnamenta AT, Klei L, et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature. 2010;466:368–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Plagnol V, Nalls MA, Bras J, et al. A two-stage meta-analysis identifies several new loci for Parkinson’s disease. PLoS Genet. 2011;7(6):e1002142.

    Article  CAS  Google Scholar 

  • Reisner W, Larsen NB, Silahtaroglu A, et al. Single-molecule denaturation mapping of DNA in nanofluidic channels. Proc Natl Acad Sci U S A. 2010;107:13294–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sandberg R. Entering the era of single-cell transcriptomics in biology and medicine. Nat Methods. 2014;11:22–4.

    Article  CAS  PubMed  Google Scholar 

  • Schibel AE, Edwards T, Kawano R, et al. Quartz nanopore membranes for suspended bilayer ion channel recordings. Anal Chem. 2010;82:7259–66.

    Article  CAS  PubMed  Google Scholar 

  • Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    Article  Google Scholar 

  • Schmitt MW, Kennedy SR, Salk JJ, et al. Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci U S A. 2012;109:14508–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seung S. Connectome: how the brain’s wiring makes us who we are. New York: Houghton Mifflin Harcourt; 2012.

    Google Scholar 

  • Sigurgeirsson B, Emanuelsson O, Lundeberg J. Analysis of stranded information using an automated procedure for strand specific RNA sequencing. BMC Genomics. 2014;15:631.

    Article  PubMed Central  PubMed  Google Scholar 

  • Singer A, Wanunu M, Morrison W, et al. Nanopore based sequence specific detection of duplex DNA for genomic profiling. Nano Lett. 2010;10:738–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975;98:503–17.

    Article  CAS  PubMed  Google Scholar 

  • Stein LD. The case for cloud computing in genome informatics. Genome Biol. 2010;11:207.

    Article  PubMed Central  PubMed  Google Scholar 

  • Streets AM, Zhang X, Cao C, et al. Microfluidic single-cell whole-transcriptome sequencing. Proc Natl Acad Sci U S A. 2014;111:7048–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Talkowski ME, Maussion G, Crapper L, et al. Disruption of a large intergenic noncoding RNA in subjects with neurodevelopmental disabilities. Am J Hum Genet. 2012;91:1128–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teague B, Waterman MS, Goldstein S, et al. High-resolution human genome structure by single-molecule analysis. PNAS. 2010;107:10848–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsuji S. The neurogenomics view of neurological diseases. JAMA Neurol. 2013;70:689–94.

    Article  PubMed  Google Scholar 

  • Wang S, Yang Z, Ma JZ, et al. Introduction to deep sequencing and its application to drug addiction research with a focus on rare variants. Mol Neurobiol. 2014;49:601–14.

    Article  CAS  PubMed  Google Scholar 

  • Wanunu M, Morrison W, Rabin Y, et al. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat Nanotechnol. 2010;5:160–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watson JD, Crick FHC. Genetic implications of the structure of deoxyribonucleic acid. Nature. 1953;171:964–9.

    Article  CAS  PubMed  Google Scholar 

  • Wei R, Martin TG, Rant U, Dietz H. DNA origami gatekeepers for solid-state nanopores. Angew Chem Int Ed Engl. 2012;51:4864–7.

    Article  CAS  PubMed  Google Scholar 

  • Wilkins MR, Sanchez JC, Gooley AA, et al. Progress with proteome projects: why all proteins expressed by genome should be identified and how to do it. Biotechnol Genet Eng Rev. 1995;13:19–50.

    Article  Google Scholar 

  • Wu CH, Fallini C, Ticozzi N, et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature. 2012;488:499–503.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng J, Moorhead M, Weng L, et al. High-throughput, high-accuracy array-based resequencing. PNAS. 2009;106:6712–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu X, Need AC, Petrovski S, Goldstein DB. One gene, many neuropsychiatric disorders: lessons from Mendelian diseases. Nat Neurosci. 2014;17:773–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kewal K. Jain M.D., F.R.A.C.S., F.F.P.M. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jain, K.K. (2015). An Overview of Methods Used in Neurogenomics and Their Applications. In: Jain, K. (eds) Applied Neurogenomics. Neuromethods, vol 97. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2247-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2247-5_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2246-8

  • Online ISBN: 978-1-4939-2247-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics