Skip to main content

Ligand Biological Activity Predictions Using Fingerprint-Based Artificial Neural Networks (FANN-QSAR)

  • Protocol
  • First Online:
Artificial Neural Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1260))

Abstract

This chapter focuses on the fingerprint-based artificial neural networks QSAR (FANN-QSAR) approach to predict biological activities of structurally diverse compounds. Three types of fingerprints, namely ECFP6, FP2, and MACCS, were used as inputs to train the FANN-QSAR models. The results were benchmarked against known 2D and 3D QSAR methods, and the derived models were used to predict cannabinoid (CB) ligand binding activities as a case study. In addition, the FANN-QSAR model was used as a virtual screening tool to search a large NCI compound database for lead cannabinoid compounds. We discovered several compounds with good CB2 binding affinities ranging from 6.70 nM to 3.75 μM. The studies proved that the FANN-QSAR method is a useful approach to predict bioactivities or properties of ligands and to find novel lead compounds for drug discovery research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Myint KZ, Xie X-Q (2010) Recent advances in fragment-based QSAR and multi-dimensional QSAR methods. Int J Mol Sci 11(10):3846–3866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Perkins R, Fang H, Tong W et al (2003) Quantitative structure-activity relationship methods: perspectives on drug discovery and toxicology. Environ Toxicol Chem 22(8):1666–1679

    Article  CAS  PubMed  Google Scholar 

  3. Salum L, Andricopulo A (2009) Fragment-based QSAR: perspectives in drug design. Mol Divers 13(3):277

    Article  CAS  PubMed  Google Scholar 

  4. Chen JZ, Wang J, Xie XQ (2007) GPCR structure-based virtual screening approach for CB2 antagonist search. J Chem Inf Model 47(4):1626–1637. doi:10.1021/ci7000814

    Article  CAS  PubMed  Google Scholar 

  5. Wang L, Ma C, Wipf P et al (2013) TargetHunter: an in silico target identification tool for predicting therapeutic potential of small organic molecules based on chemogenomic database. AAPS J 15:395–406, PMID: 23292636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Tandon M, Wang L, Xu Q et al (2012) A targeted library screen reveals a new inhibitor scaffold for protein kinase D. PLoS One 7(9):e44653. doi:10.1371/journal.pone.0044653, PMID: 23028574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Ma C, Wang L, Yang P et al (2013) LiCABEDS II. Modeling of ligand selectivity for G-protein coupled cannabinoid receptors. J Chem Inf Model 53(1):11–26. doi:10.1021/ci3003914

    Article  PubMed Central  PubMed  Google Scholar 

  8. Wang L, Ma C, Wipf P et al (2012) Linear and nonlinear support vector machine for the classification of human 5-HT1A ligand functionality. Mol Inf 31(1):85–95. doi:10.1002/minf.201100126

    Article  Google Scholar 

  9. Myint K, Xie X-Q (2011) Fragment-based QSAR algorithm development for compound bioactivity prediction. SAR QSAR Environ Res 22(3):385–410

    Article  CAS  PubMed  Google Scholar 

  10. Chen JZ, Myint KZ, Xie X-Q (2011) New QSAR prediction models derived from GPCR CB2-antagonistic triaryl bis-sulfone analogues by a combined molecular morphological and pharmacophoric approach. SAR QSAR Environ Res 22(5–6):525–544. doi:10.1080/1062936x.2011.569948

    Article  CAS  PubMed  Google Scholar 

  11. Chen J-Z, Han X-W, Liu Q et al (2006) 3D-QSAR studies of arylpyrazole antagonists of cannabinoid receptor subtypes CB1 and CB2. A combined NMR and CoMFA approach. J Med Chem 49(2):625–636

    Article  CAS  PubMed  Google Scholar 

  12. Vilar S, Santana L, Uriarte E (2006) Probabilistic neural network model for the in silico evaluation of anti-HIV activity and mechanism of action. J Med Chem 49(3):1118–1124. doi:10.1021/jm050932j

    Article  CAS  PubMed  Google Scholar 

  13. González-Díaz H, Bonet I, Terán C et al (2007) ANN-QSAR model for selection of anticancer leads from structurally heterogeneous series of compounds. Eur J Med Chem 42(5):580–585. doi:10.1016/j.ejmech.2006.11.016

    Article  PubMed  Google Scholar 

  14. Patra JC, Chua BH (2011) Artificial neural network-based drug design for diabetes mellitus using flavonoids. J Comput Chem 32(4):555–567. doi:10.1002/jcc.21641

    Article  CAS  PubMed  Google Scholar 

  15. Dimitrov I, Naneva L, Bangov I et al (2014) Allergenicity prediction by artificial neural networks. J Chemometrics. doi:10.1002/cem.2597

    Google Scholar 

  16. Vanyúr R, Héberger K, Kövesdi I et al (2002) Prediction of tumoricidal activity and accumulation of photosensitizers in photodynamic therapy using multiple linear regression and artificial neural networks. Photochem Photobiol 75(5):471–478. doi:10.1562/0031-8655(2002)0750471potaaa2.0.co2

    Article  Google Scholar 

  17. Myint K-Z, Wang L, Tong Q et al (2012) Molecular fingerprint-based artificial neural networks QSAR for ligand biological activity predictions. Mol Pharm 9(10):2912–2923. doi:10.1021/mp300237z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Molnár L, Keserű GM (2002) A neural network based virtual screening of cytochrome P450 3A4 inhibitors. Bioorg Med Chem Lett 12(3):419–421. doi:10.1016/s0960-894x(01)00771-5

    Article  PubMed  Google Scholar 

  19. Muresan S, Sadowski J (2005) “In-House Likeness”: comparison of large compound collections using artificial neural networks. J Chem Inf Model 45(4):888–893. doi:10.1021/ci049702o

    Article  CAS  PubMed  Google Scholar 

  20. Wang L, Xie XQ (2012) Cannabinoid Ligand Database. Accessed Nov 2011

    Google Scholar 

  21. Sutherland JJ, O’Brien LA, Weaver DF (2004) A comparison of methods for modeling quantitative structure–activity relationships. J Med Chem 47(22):5541–5554. doi:10.1021/jm0497141

    Article  CAS  PubMed  Google Scholar 

  22. Greenidge PA, Carlsson B, Bladh L-G et al (1998) Pharmacophores incorporating numerous excluded volumes defined by x-ray crystallographic structure in three-dimensional database searching: application to the thyroid hormone receptor. J Med Chem 41(14):2503–2512

    Article  CAS  PubMed  Google Scholar 

  23. Mathworks (2007) MATLAB. 7.5.0.342 (R2007b) edn, Natick, MA

    Google Scholar 

  24. O’Boyle N, Banck M, James C et al (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33

    Article  PubMed Central  PubMed  Google Scholar 

  25. Durant JL, Leland BA, Henry DR et al (2002) Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci 42(6):1273–1280. doi:10.1021/ci010132r

    Article  CAS  PubMed  Google Scholar 

  26. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50(5):742–754. doi:10.1021/ci100050t

    Article  CAS  PubMed  Google Scholar 

  27. Cramer R, Patterson D, Bunce J (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  PubMed  Google Scholar 

  28. Klebe G (1998) Comparative molecular similarity indices analysis: CoMSIA. 3D QSAR in Drug Design. Three-Dimensional Quantitative Structure Activity Relationships 3:87–104

    Google Scholar 

  29. Lowis D (1997) HQSAR: a new, highly predictive QSAR technique. Tripos Technical Notes 1(5):17

    Google Scholar 

  30. Jain AN (2004) Ligand-based structural hypotheses for virtual screening. J Med Chem 47(4):947–961

    Article  CAS  PubMed  Google Scholar 

  31. Ferguson AM, Heritage T, Jonathon P et al (1997) EVA: a new theoretically based molecular descriptor for use in QSAR/QSPR analysis. J Comput Aided Mol Des 11(2):143–152. doi:10.1023/a:1008026308790

    Article  CAS  PubMed  Google Scholar 

  32. Agrafiotis DK, Cedeño W, Lobanov VS (2002) On the use of neural network ensembles in QSAR and QSPR. J Chem Inf Comput Sci 42(4):903–911. doi:10.1021/ci0203702

    Article  CAS  PubMed  Google Scholar 

  33. Bender A, Jenkins JL, Scheiber J et al (2009) How similar are similarity searching methods? A principal component analysis of molecular descriptor space. J Chem Inf Model 49(1):108–119. doi:10.1021/ci800249s

    Article  CAS  PubMed  Google Scholar 

  34. Glem R, Bender A, Arnby C et al (2006) Circular fingerprints: flexible molecular descriptors with applications from physical chemistry to ADME. IDrugs 9(3):199–204

    PubMed  Google Scholar 

  35. Bellis LJ, Akhtar R, Al-Lazikani B et al (2011) Collation and data-mining of literature bioactivity data for drug discovery. Biochem Soc Trans 39(5):1365–1370. doi:10.1042/BST0391365, BST0391365 [pii]

    Article  CAS  PubMed  Google Scholar 

  36. Collins J, Crowell J (2011) Drug Synthesis and Chemistry Branch, Developmental Therapeutics Program (DTP), Division of Cancer Treatment and Diagnosis, National Cancer Institute. http://dtp.nci.nih.gov/

  37. Tripos (2012) SYBYL-X 1.2. 1699 South Hanley Rd., St. Louis, Missouri, 63144, USA

    Google Scholar 

  38. Xie XQ, Chen JZ (2008) Data mining a small molecule drug screening representative subset from NIH PubChem. J Chem Inf Model 48(3):465–475. doi:10.1021/ci700193u

    Article  CAS  PubMed  Google Scholar 

  39. Huffman JW, Yu S, Showalter V et al (1996) Synthesis and pharmacology of a very potent cannabinoid lacking a phenolic hydroxyl with high affinity for the CB2 receptor. J Med Chem 39(20):3875–3877. doi:10.1021/jm960394y

    Article  CAS  PubMed  Google Scholar 

  40. Morgan HL (1965) The generation of a unique machine description for chemical structures—a technique developed at Chemical Abstracts Service. J Chem Doc 5(2):107–113. doi:10.1021/c160017a018

    Article  CAS  Google Scholar 

  41. Gertsch J, Leonti M, Raduner S et al (2008) Beta-caryophyllene is a dietary cannabinoid. Proc Natl Acad Sci 105(26):9099–9104. doi:10.1073/pnas.0803601105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Raduner S, Majewska A, Chen J-Z et al (2006) Alkylamides from Echinacea are a new class of cannabinomimetics: cannabinoid type 2 receptor-dependent and -independent immunomodulatory effects. J Biol Chem 281(20):14192–14206

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Y, Xie Z, Wang L et al (2011) Mutagenesis and computer modeling studies of a GPCR conserved residue W5.43(194) in ligand recognition and signal transduction for CB2 receptor. Int Immunopharmacol 11(9):1303–1310. doi:10.1016/j.intimp.2011.04.013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Yang P, Wang L, Feng R et al (2013) Novel triaryl sulfonamide derivatives as selective cannabinoid receptor 2 inverse agonists and osteoclast inhibitors: discovery, optimization, and biological evaluation. J Med Chem 56(5):2045–2058. doi:10.1021/jm3017464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. DePriest SA, Mayer D, Naylor CB et al (1993) 3D-QSAR of angiotensin-converting enzyme and thermolysin inhibitors: a comparison of CoMFA models based on deduced and experimentally determined active site geometries. J Am Chem Soc 115(13):5372–5384. doi:10.1021/ja00066a004

    Article  CAS  Google Scholar 

  46. Sugimoto H, Tsuchiya Y, Sugumi H et al (1992) Synthesis and structure-activity relationships of acetylcholinesterase inhibitors: 1-benzyl-4-(2-phthalimidoethyl)piperidine, and related derivatives. J Med Chem 35(24):4542–4548. doi:10.1021/jm00102a005

    Article  CAS  PubMed  Google Scholar 

  47. Sugimoto H, Tsuchiya Y, Sugumi H et al (1990) Novel piperidine derivatives. Synthesis and anti-acetylcholinesterase activity of 1-benzyl-4-[2-(N-benzoylamino)ethyl]piperidine derivatives. J Med Chem 33(7):1880–1887. doi:10.1021/jm00169a008

    Article  CAS  PubMed  Google Scholar 

  48. Haefely W, Kyburz E, Gerecke M et al (1985) Recent advances in the molecular pharmacology of benzodiazepine receptors and in the structure-activity relationships of their agonists and antagonists. Adv Drug Res 14:165–322

    CAS  Google Scholar 

  49. Chavatte P, Yous S, Marot C et al (2001) Three-dimensional quantitative structure–activity relationships of cyclo-oxygenase-2 (COX-2) inhibitors: a comparative molecular field analysis. J Med Chem 44(20):3223–3230. doi:10.1021/jm0101343

    Article  CAS  PubMed  Google Scholar 

  50. Talley JJ, Brown DL, Carter JS et al (2000) 4-[5-Methyl-3-phenylisoxazol-4-yl]-benzenesulfonamide, Valdecoxib: a potent and selective inhibitor of COX-2. J Med Chem 43(5):775–777. doi:10.1021/jm990577v

    Article  CAS  PubMed  Google Scholar 

  51. Huang H-C, Li JJ, Garland DJ et al (1996) Diarylspiro[2.4]heptenes as orally active, highly selective cyclooxygenase-2 inhibitors: synthesis and structure–activity relationships. J Med Chem 39(1):253–266. doi:10.1021/jm950664x

    Article  CAS  PubMed  Google Scholar 

  52. Penning TD, Talley JJ, Bertenshaw SR et al (1997) Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-Methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (SC-58635, Celecoxib). J Med Chem 40(9):1347–1365. doi:10.1021/jm960803q

    Article  CAS  PubMed  Google Scholar 

  53. Li JJ, Norton MB, Reinhard EJ et al (1996) Novel terphenyls as selective cyclooxygenase-2 inhibitors and orally active anti-inflammatory agents. J Med Chem 39(9):1846–1856. doi:10.1021/jm950878e

    Article  CAS  PubMed  Google Scholar 

  54. Li JJ, Anderson GD, Burton EG et al (1995) 1,2-Diarylcyclopentenes as selective cyclooxygenase-2 inhibitors and orally active anti-inflammatory agents. J Med Chem 38(22):4570–4578. doi:10.1021/jm00022a023

    Article  CAS  PubMed  Google Scholar 

  55. Reitz DB, Li JJ, Norton MB et al (1994) Selective cyclooxygenase inhibitors: novel 1,2-diarylcyclopentenes are potent and orally active COX-2 inhibitors. J Med Chem 37(23):3878–3881. doi:10.1021/jm00049a005

    Article  CAS  PubMed  Google Scholar 

  56. Khanna IK, Yu Y, Huff RM et al (2000) Selective cyclooxygenase-2 inhibitors: heteroaryl modified 1,2-diarylimidazoles are potent, orally active antiinflammatory agents. J Med Chem 43(16):3168–3185. doi:10.1021/jm0000719

    Article  CAS  PubMed  Google Scholar 

  57. Khanna IK, Weier RM, Yu Y et al (1997) 1,2-diarylimidazoles as potent, cyclooxygenase-2 selective, and orally active antiinflammatory agents. J Med Chem 40(11):1634–1647. doi:10.1021/jm9700225

    Article  CAS  PubMed  Google Scholar 

  58. Khanna IK, Weier RM, Yu Y et al (1997) 1,2-Diarylpyrroles as potent and selective inhibitors of cyclooxygenase-2. J Med Chem 40(11):1619–1633. doi:10.1021/jm970036a

    Article  CAS  PubMed  Google Scholar 

  59. Gangjee A, Vidwans AP, Vasudevan A et al (1998) Structure-based design and synthesis of lipophilic 2,4-diamino-6-substituted quinazolines and their evaluation as inhibitors of dihydrofolate reductases and potential antitumor agents. J Med Chem 41(18):3426–3434. doi:10.1021/jm980081y

    Article  CAS  PubMed  Google Scholar 

  60. Rosowsky A, Mota CE, Wright JE et al (1994) 2,4-Diamino-5-chloroquinazoline analogs of trimetrexate and piritrexim: synthesis and antifolate activity. J Med Chem 37(26):4522–4528. doi:10.1021/jm00052a011

    Article  CAS  PubMed  Google Scholar 

  61. Rosowsky A, Cody V, Galitsky N et al (1999) Structure-based design of selective inhibitors of dihydrofolate reductase: synthesis and antiparasitic activity of 2,4-diaminopteridine analogues with a bridged diarylamine side chain. J Med Chem 42(23):4853–4860. doi:10.1021/jm990331q

    Article  CAS  PubMed  Google Scholar 

  62. Graffner-Nordberg M, Kolmodin K, Åqvist J et al (2001) Design, synthesis, computational prediction, and biological evaluation of ester soft drugs as inhibitors of dihydrofolate reductase from Pneumocystis carinii. J Med Chem 44(15):2391–2402. doi:10.1021/jm010856u

    Article  CAS  PubMed  Google Scholar 

  63. Gangjee A, Elzein E, Queener SF et al (1998) Synthesis and biological activities of tricyclic conformationally restricted tetrahydropyrido annulated furo[2,3-d]pyrimidines as inhibitors of dihydrofolate reductases. J Med Chem 41(9):1409–1416. doi:10.1021/jm9705420

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyaw Z. Myint Ph.D. or Xiang-Qun Xie M.B.A., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Myint, K.Z., Xie, XQ. (2015). Ligand Biological Activity Predictions Using Fingerprint-Based Artificial Neural Networks (FANN-QSAR). In: Cartwright, H. (eds) Artificial Neural Networks. Methods in Molecular Biology, vol 1260. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2239-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2239-0_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2238-3

  • Online ISBN: 978-1-4939-2239-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics