Skip to main content

Prediction and Analysis of Intrinsically Disordered Proteins

  • Protocol
  • First Online:
Structural Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1261))

Abstract

Intrinsically disordered proteins and protein regions (IDPs/IDRs) do not adopt a well-defined folded structure under physiological conditions. Instead, these proteins exist as heterogeneous and dynamical conformational ensembles. IDPs are widespread in eukaryotic proteomes and are involved in fundamental biological processes, mostly related to regulation and signaling. At the same time, disordered regions often pose significant challenges to the structure determination process, which generally requires highly homogeneous proteins samples. In this book chapter, we provide a brief overview of protein disorder, describe various bioinformatics resources that have been developed in recent years for their characterization, and give a general outline of their applications in various types of structural genomics projects. Traditionally, disordered segments were filtered out to optimize the yield of structure determination pipelines. However, it is becoming increasingly clear that the structural characterization of proteins cannot be complete without the incorporation of intrinsically disordered regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berman HM et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533

    CAS  PubMed  Google Scholar 

  3. Dunker AK et al (2001) Intrinsically disordered protein. J Mol Graph Model 19:26–59

    CAS  PubMed  Google Scholar 

  4. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331

    CAS  PubMed  Google Scholar 

  5. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    CAS  PubMed  Google Scholar 

  6. Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41:415–427

    CAS  PubMed  Google Scholar 

  7. Vucetic S et al (2003) Flavors of protein disorder. Proteins 52:573–584

    CAS  PubMed  Google Scholar 

  8. Pentony MM, Jones DT (2010) Modularity of intrinsic disorder in the human proteome. Proteins 78:212–221

    CAS  PubMed  Google Scholar 

  9. Gibson TJ (2009) Cell regulation: determined to signal discrete cooperation. Trends Biochem Sci 4:471–482

    Google Scholar 

  10. Bhattacharyya RP et al (2006) Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. Annu Rev Biochem 75:655–680

    CAS  PubMed  Google Scholar 

  11. Tompa P (2005) The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett 579:3346–3354

    CAS  PubMed  Google Scholar 

  12. Xie H et al (2007) Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J Proteome Res 6:1882–1898

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Dyson HJ, Wright PE (2002) Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol 12:54–60

    CAS  PubMed  Google Scholar 

  14. Meszaros B et al (2007) Molecular principles of the interactions of disordered proteins. J Mol Biol 372:549–561

    CAS  PubMed  Google Scholar 

  15. Vacic V et al (2007) Characterization of molecular recognition features, MoRFs, and their binding partners. J Proteome Res 6:2351–2366

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Fuxreiter M, Tompa P (2012) Fuzzy complexes: a more stochastic view of protein function. Adv Exp Med Biol 25:1–14

    Google Scholar 

  17. Tompa P (2012) Intrinsically disordered proteins: a 10-year recap. Trends Biochem Sci 37:509–516

    CAS  PubMed  Google Scholar 

  18. Iakoucheva LM et al (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323:573–584

    CAS  PubMed  Google Scholar 

  19. Ward JJ et al (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337:635–645

    CAS  PubMed  Google Scholar 

  20. Dunker AK et al (2000) Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform 11:161–171

    CAS  PubMed  Google Scholar 

  21. Schlessinger A et al (2011) Protein disorder—a breakthrough invention of evolution? Curr Opin Struct Biol 21:412–418

    CAS  PubMed  Google Scholar 

  22. Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246

    CAS  PubMed  Google Scholar 

  23. Uversky VN et al (2009) Unfoldomics of human diseases: linking protein intrinsic disorder with diseases. BMC Genomics 10 Suppl 1:S7

    Google Scholar 

  24. Mistry J et al (2013) An estimated 5 % of new protein structures solved today represent a new Pfam family. Acta Crystallogr D Biol Crystallogr 69:2186–2193

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Melamud E, Moult J (2003) Evaluation of disorder predictions in CASP5. Proteins 53 Suppl 6:561–565

    Google Scholar 

  26. Bordoli LF, Kiefer F, Schwede T (2001) Assessment of disorder predictions in CASP7. Proteins 69 Suppl 8:129–136

    Google Scholar 

  27. Le Gall T et al (2007) Intrinsic disorder in the Protein Data Bank. J Biomol Struct Dyn 24:325–342

    PubMed  Google Scholar 

  28. Monastyrskyy B et al (2014) Assessment of protein disorder region predictions in CASP10. Proteins 82 Suppl 2:127–137

    Google Scholar 

  29. Gunasekaran K, Tsai CJ, Nussinov R (2004) Analysis of ordered and disordered protein complexes reveals structural features discriminating between stable and unstable monomers. J Mol Biol 341:1327–1341

    CAS  PubMed  Google Scholar 

  30. Eliezer D (2009) Biophysical characterization of intrinsically disordered proteins. Curr Opin Struct Biol 19:23–30

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Vucetic S et al (2005) DisProt: a database of protein disorder. Bioinformatics 21:137–140

    CAS  PubMed  Google Scholar 

  32. Sickmeier M et al (2007) DisProt: the Database of Disordered Proteins. Nucleic Acids Res 5(Database issue):D786–D793

    Google Scholar 

  33. Fukuchi S et al (2012) IDEAL: Intrinsically Disordered proteins with Extensive Annotations and Literature. Nucleic Acids Res 40(Database issue):D507–D511

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Fukuchi S et al (2014) IDEAL in 2014 illustrates interaction networks composed of intrinsically disordered proteins and their binding partners. Nucleic Acids Res 42:D320–D325

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Fukuchi S et al (2009) Development of an accurate classification system of proteins into structured and unstructured regions that uncovers novel structural domains: its application to human transcription factors. BMC Struct Biol 9:26

    PubMed Central  PubMed  Google Scholar 

  36. Di Domenico T et al (2012) MobiDB: a comprehensive database of intrinsic protein disorder annotations. Bioinformatics 28:2080–2081

    PubMed  Google Scholar 

  37. Oates ME et al (2013) D(2)P(2): database of disordered protein predictions. Nucleic Acids Res 41(Database issue):D508–D516

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Wilson D et al (2009) SUPERFAMILY—sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic Acids Res 37(Database issue):D380–D386

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Li X et al (1990) Predicting protein disorder for N-, C-, and internal regions. Genome Inform Ser Workshop Genome Inform 10:30–40

    CAS  Google Scholar 

  40. He B et al (2009) Predicting intrinsic disorder in proteins: an overview. Cell Res 19:929–949

    CAS  PubMed  Google Scholar 

  41. Dosztanyi Z, Meszaros B, Simon I (2010) Bioinformatical approaches to characterize intrinsically disordered/unstructured proteins. Brief Bioinform 11:225–243

    CAS  PubMed  Google Scholar 

  42. Williams RM et al (2001) The protein non-folding problem: amino acid determinants of intrinsic order and disorder. Pac Symp Biocomput:89–100

    Google Scholar 

  43. Xie Q et al (1998) The sequence attribute method for determining relationships between sequence and protein disorder. Genome Inform Ser Workshop Genome Inform 9:193–200

    CAS  PubMed  Google Scholar 

  44. Galzitskaya OV, Garbuzynskiy SO, Lobanov MY (2006) FoldUnfold: web server for the prediction of disordered regions in protein chain. Bioinformatics 22:2948–2949

    CAS  PubMed  Google Scholar 

  45. Linding R et al (2003) GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 31:3701–3807

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Prilusky J et al (2005) FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21:3435–3458

    CAS  PubMed  Google Scholar 

  47. Dosztanyi Z et al (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21:3433–3434

    CAS  PubMed  Google Scholar 

  48. Dosztanyi Z et al (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 347:827–839

    CAS  PubMed  Google Scholar 

  49. Obradovic Z et al (2005) Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins 61 Suppl 7:176–182

    Google Scholar 

  50. Hirose S et al (2007) POODLE-L: a two-level SVM prediction system for reliably predicting long disordered regions. Bioinformatics 23:2046–2053

    CAS  PubMed  Google Scholar 

  51. Predicting intrinsic disorder from amino acid sequence. Proteins 53 Suppl 6:566–572

    Google Scholar 

  52. Schlessinger A, Punta M, Rost B (2007) Natively unstructured regions in proteins identified from contact predictions. Bioinformatics 23:2376–2384

    CAS  PubMed  Google Scholar 

  53. Liu J, Rost B (2003) NORSp: predictions of long regions without regular secondary structure. Nucleic Acids Res 31:3833–3835

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Linding R et al (2003) Protein disorder prediction: implications for structural proteomics. Structure 11:1453–1459

    CAS  PubMed  Google Scholar 

  55. Yang ZR et al (2005) RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21:3369–3376

    CAS  PubMed  Google Scholar 

  56. Shimizu K et al (2007) Predicting mostly disordered proteins by using structure-unknown protein data. BMC Bioinformatics 8:78

    PubMed Central  PubMed  Google Scholar 

  57. McGuffin LJ (2008) Intrinsic disorder prediction from the analysis of multiple protein fold recognition models. Bioinformatics 24:1798–1804

    CAS  PubMed  Google Scholar 

  58. Deng X, Eickholt J, Cheng PJ (2009) PreDisorder: ab initio sequence-based prediction of protein disordered regions. BMC Bioinformatics 10:436

    PubMed Central  PubMed  Google Scholar 

  59. Walsh I et al (2012) ESpritz: accurate and fast prediction of protein disorder. Bioinformatics 28:503–509

    CAS  PubMed  Google Scholar 

  60. Walsh I et al (2011) CSpritz: accurate prediction of protein disorder segments with annotation for homology, secondary structure and linear motifs. Nucleic Acids Res 39(Web Server issue):W190–W196

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Wang L, Sauer UH (2008) OnD-CRF: predicting order and disorder in proteins using conditional random fields. Bioinformatics 24:1401–1402

    Google Scholar 

  62. Ishida T, Kinoshita K (2007) PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 35(Web Server issue):W460–W464

    PubMed Central  PubMed  Google Scholar 

  63. Peng K et al (2006) Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7:208

    PubMed Central  PubMed  Google Scholar 

  64. Huang YJ, Acton TB, Montelione GT (2014) DisMeta: a meta server for construct design and optimization. Methods Mol Biol 1091:3–16

    PubMed Central  PubMed  Google Scholar 

  65. Kozlowski LP, Bujnicki JM (2012) MetaDisorder: a meta-server for the prediction of intrinsic disorder in proteins. BMC Bioinformatics 13:111

    PubMed Central  PubMed  Google Scholar 

  66. Mizianty MJ et al (2010) Improved sequence-based prediction of disordered regions with multilayer fusion of multiple information sources. Bioinformatics 26:i489–i496

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Xue B et al (2010) PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 1804:996–1010

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Schlessinger A et al (2009) Improved disorder prediction by combination of orthogonal approaches. PLoS One 4:e4433

    PubMed Central  PubMed  Google Scholar 

  69. Monastyrskyy B et al (2011) Evaluation of disorder predictions in CASP9. Proteins 79 Suppl 10:107–118

    Google Scholar 

  70. Peng ZL, Kurgan L (2012) Comprehensive comparative assessment of in-silico predictors of disordered regions. Curr Protein Pept Sci 13:6–18

    CAS  PubMed  Google Scholar 

  71. Gsponer J et al (2008) Tight regulation of unstructured proteins: from transcript synthesis to protein degradation. Science 322:1365–1368

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Pajkos M et al (2012) Is there a biological cost of protein disorder? Analysis of cancer-associated mutations. Mol Biosyst 8:296–307

    CAS  PubMed  Google Scholar 

  73. Kovacs E et al (2010) Dual coding in alternative reading frames correlates with intrinsic protein disorder. Proc Natl Acad Sci U S A 107:5429–5434

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Graslund S et al (2008) Protein production and purification. Nat Methods 5:135–146

    PubMed  Google Scholar 

  75. Dosztanyi Z et al (2007) Prediction of protein disorder at the domain level. Curr Protein Pept Sci 8:161–171

    CAS  PubMed  Google Scholar 

  76. Oldfield CJ et al (2013) Utilization of protein intrinsic disorder knowledge in structural proteomics. Biochim Biophys Acta 1834:487–498

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Suskiewicz MJ et al (2011) Context-dependent resistance to proteolysis of intrinsically disordered proteins. Protein Sci 20:1285–1297

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Linding R et al (2004) A comparative study of the relationship between protein structure and beta-aggregation in globular and intrinsically disordered proteins. J Mol Biol 342:345–353

    CAS  PubMed  Google Scholar 

  79. Esnouf RM et al (2006) Honing the in silico toolkit for detecting protein disorder. Acta Crystallogr D Biol Crystallogr 62:1260–1266

    PubMed  Google Scholar 

  80. Hogg-Johnson S et al (2012) A randomised controlled study to evaluate the effectiveness of targeted occupational health and safety consultation or inspection in Ontario manufacturing workplaces. Occup Environ Med 69:890–900

    PubMed  Google Scholar 

  81. Oldfield CJ et al (2005) Addressing the intrinsic disorder bottleneck in structural proteomics. Proteins 59:444–453

    CAS  PubMed  Google Scholar 

  82. Grabowski M et al (2007) Structural genomics: keeping up with expanding knowledge of the protein universe. Curr Opin Struct Biol 17:347–353

    CAS  PubMed Central  PubMed  Google Scholar 

  83. von Heijne G (2007) The membrane protein universe: what’s out there and why bother? J Intern Med 261:543–557

    Google Scholar 

  84. Kloppmann E, Punta M, Rost B (2012) Structural genomics plucks high-hanging membrane proteins. Curr Opin Struct Biol 22:326–332

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Love J et al (2010) The New York Consortium on Membrane Protein Structure (NYCOMPS): a high-throughput platform for structural genomics of integral membrane proteins. J Struct Funct Genomics 11:191–199

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Kelly L et al (2009) A survey of integral alpha-helical membrane proteins. J Struct Funct Genomics 10:269–280

    PubMed Central  PubMed  Google Scholar 

  87. Pieper U et al (2013) Coordinating the impact of structural genomics on the human alpha-helical transmembrane proteome. Nat Struct Mol Biol 20:135–138

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Bernado P et al (2005) A structural model for unfolded proteins from residual dipolar couplings and small-angle x-ray scattering. Proc Natl Acad Sci U S A 102:17002–17007

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Schneider R et al (2012) Towards a robust description of intrinsic protein disorder using nuclear magnetic resonance spectroscopy. Mol Biosyst 8:58–68

    CAS  PubMed  Google Scholar 

  90. Fisher CK, Stultz CM (2011) Constructing ensembles for intrinsically disordered proteins. Curr Opin Struct Biol 21:426–431

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Varadi M et al (2014) pE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins. Nucleic Acids Res 42:D326–D335

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Huang F et al (2012) Subclassifying disordered proteins by the CH-CDF plot method. Pac Symp Biocomput:128–139

    Google Scholar 

  93. Xue B et al (2009) CDF it all: consensus prediction of intrinsically disordered proteins based on various cumulative distribution functions. FEBS Lett 583:1469–1474

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Altschul SF et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Wootton JC (1994) Non-globular domains in protein sequences: automated segmentation using complexity measures. Comput Chem 18:269–285

    CAS  PubMed  Google Scholar 

  96. Meszaros B, Dosztanyi Z, Simon I (2012) Disordered binding regions and linear motifs—bridging the gap between two models of molecular recognition. PLoS One 7:e46829

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Meszaros B, Simon I, Dosztanyi Z (2009) Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 5:e1000376

    PubMed Central  PubMed  Google Scholar 

  98. Mooney C et al (2012) Prediction of short linear protein binding regions. J Mol Biol 415:193–204

    CAS  PubMed  Google Scholar 

  99. Disfani FM et al (2012) MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins. Bioinformatics 28:i75–i83

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Dinkel H et al (2014) The eukaryotic linear motif resource ELM: 10 years and counting. Nucleic Acids Res 42:D259–D266

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Davey NE et al (2012) SLiMPrints: conservation-based discovery of functional motif fingerprints in intrinsically disordered protein regions. Nucleic Acids Res 40:10628–10641

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Nguyen Ba AN et al (2012) Proteome-wide discovery of evolutionary conserved sequences in disordered regions. Sci Signal 5:rs1

    PubMed  Google Scholar 

  103. Bryson K, Cozzetto D, Jones DT (2007) Computer-assisted protein domain boundary prediction using the DomPred server. Curr Protein Pept Sci 8:181–188

    CAS  PubMed  Google Scholar 

  104. Kim DE et al (2005) Automated prediction of domain boundaries in CASP6 targets using Ginzu and RosettaDOM. Proteins 61 Suppl 7:193–200

    Google Scholar 

  105. Hunter S et al (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40(Database issue):D306–D312

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Finn RD et al (2014) Pfam: the protein families database. Nucleic Acids Res 42(Database issue):D222–D230

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Letunic I, Doerks T, Bork P (2012) MART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40(Database issue):D302–D305

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Sharma S et al (2009) Construct optimization for protein NMR structure analysis using amide hydrogen/deuterium exchange mass spectrometry. Proteins 76:882–894

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Pantazatos D et al (2004) Rapid refinement of crystallographic protein construct definition employing enhanced hydrogen/deuterium exchange MS. Proc Natl Acad Sci U S A 101:751–756

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Zhang Y, Stec B, Godzik A (2007) Between order and disorder in protein structures: analysis of “dual personality” fragments in proteins. Structure 15:1141–1147

    PubMed Central  PubMed  Google Scholar 

  111. Fuxreiter M et al (2004) Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. J Mol Biol 338:1015–1026

    CAS  PubMed  Google Scholar 

  112. Brown CJ et al (2011) Evolution and disorder. Curr Opin Struct Biol 21:441–446

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Akiva E et al (2012) A dynamic view of domain-motif interactions. PLoS Comput Biol 8:e1002341

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Mittag T, Kay LE, Forman-Kay JD (2010) Protein dynamics and conformational disorder in molecular recognition. J Mol Recognit 23:105–116

    CAS  PubMed  Google Scholar 

  115. Mitrea DM, Kriwacki RW (2012) Cryptic disorder: an order-disorder transformation regulates the function of nucleophosmin. Pac Symp Biocomput:152–163

    Google Scholar 

  116. Ward JJ et al (2004) The DISOPRED server for the prediction of protein disorder. Bioinformatics 20:2138–2139

    CAS  PubMed  Google Scholar 

  117. Shimizu K, Hirose S, Noguchi T (2007) POODLE-S: web application for predicting protein disorder by using physicochemical features and reduced amino acid set of a position-specific scoring matrix. Bioinformatics 23:2337–2338

    CAS  PubMed  Google Scholar 

  118. Kissinger CR et al (1995) Crystal structures of human calcineurin and the human FKBP12-FK506-calcineurin complex. Nature 378:641–644

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants of the Hungarian Scientific Research Fund (OTKA) K108798 and NK100482 [Z. D. and I. S.] and Wellcome Trust WT077044/Z/05/Z [M.P.]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsuzsanna Dosztányi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Punta, M., Simon, I., Dosztányi, Z. (2015). Prediction and Analysis of Intrinsically Disordered Proteins. In: Owens, R. (eds) Structural Proteomics. Methods in Molecular Biology, vol 1261. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2230-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2230-7_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2229-1

  • Online ISBN: 978-1-4939-2230-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics