Skip to main content

Methods for the Successful Crystallization of Membrane Proteins

  • Protocol
  • First Online:
Structural Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1261))

Abstract

In recent years much effort has been put towards innovative developments to overcome the numerous obstacles associated with structure determination of membrane proteins by X-ray crystallography. The advent of genomics and proteomics initiatives combined with high-throughput technologies, such as automation, miniaturization, integration, and third-generation synchrotrons, has enhanced membrane protein structure determination rate. Nevertheless, crystallization of membrane proteins still remains one of the most troublesome hurdles that every structural group must undertake. This chapter presents high-throughput methods easily available to any researcher interested in membrane protein characterization and crystallization. It is our hope this chapter can be used as a positive guide to all who are attempting crystallizing membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanders CR, Myers JK (2004) Disease-related misassembly of membrane proteins. Annu Rev Biophys Biomol Struct 33:25–51

    Article  CAS  PubMed  Google Scholar 

  2. Wagner S, Klepsch MM, Schlegel S et al (2008) Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci U S A 105:14371–14376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Schlegel S, Löfblom J, Lee C et al (2012) Optimizing membrane protein overexpression in the Escherichia coli strain Lemo21 (DE3). J Mol Biol 423:648–659

    Article  CAS  PubMed  Google Scholar 

  4. Fays FA, Zygy R-Z, Stroud RM (2010) Overexpression and purification of integral membrane proteins in yeast. Methods Enzymol 470:695–707

    Article  Google Scholar 

  5. Drew D, Lerch M, Kunji E et al (2006) Optimization of membrane protein overexpression and purification using GFP fusions. Nat Methods 3:303–313

    Article  CAS  PubMed  Google Scholar 

  6. Tate CG (2001) Overexpression of mammalian integral membrane proteins for structural studies. FEBS Lett 504:94–98

    Article  CAS  PubMed  Google Scholar 

  7. Tate CG, Schertler GF (2009) Engineering G protein-coupled receptors to facilitate their structure determination. Curr Opin Struct Biol 19:386–395

    Article  CAS  PubMed  Google Scholar 

  8. Chun E, Thompson AA, Liu W et al (2012) Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20:967–976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Rasmussen SG, Choi HJ, Fung JJ et al (2011) Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469:175–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Privé GG (2007) Detergents for the stabilization and crystallization of membrane proteins. Methods 41:388–397

    Article  PubMed  Google Scholar 

  11. Chae PS, Rasmussen SG, Rana RR et al (2010) Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat Methods 7:1003–1008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Serebryany E, Zhu GA, Yan EC (2012) Artificial membrane-like environments for in vitro studies of purified G-protein coupled receptors. Biochim Biophys Acta 1818:225–233

    Article  CAS  PubMed  Google Scholar 

  13. D’Arcy A, Villard F, Marsh M (2007) An automated microseed matrix-screening method for protein crystallization. Acta Crystallogr D Biol Crystallogr 63:550–554

    Article  PubMed  Google Scholar 

  14. Axford D, Owen RL, Foadi J et al (2012) In situ macromolecular crystallography using microbeams. Acta Crystallogr D Biol Crystallogr 68:592–600

    Article  CAS  PubMed  Google Scholar 

  15. Cherezov V, Caffrey M (2007) Miniaturization and automation for high-throughput membrane protein crystallization in lipidic mesophases. In: Chayen NE (ed) Protein crystallization strategies for structural genomics. International University Line, San Diego, CA

    Google Scholar 

  16. Moraes I, Evans G, Sanchez-Weatherby J et al (2014) Membrane protein structure determination: the next generation. Biochim Biophys Acta 1838:78–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Wen J, Arakawa T, Philo JS (1996) Size-exclusion chromatography with on-line light-scattering, absorbance, and refractive index detectors for studying proteins and their interactions. Anal Biochem 240:155–166

    Article  CAS  PubMed  Google Scholar 

  18. Strop P, Brunger AT (2005) Refractive index-based determination of detergent concentration and its application to the study of membrane proteins. Protein Sci 14:2207–2221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Zhao H, Brown PH, Schuck P (2011) On the distribution of protein refractive index increments. Biophys J 100:2309–2317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Slotboom DJ, Duurkens RH, Olieman K, Erkens GB (2008) Static light scattering to characterize membrane proteins in detergent solution. Methods 46:73–82

    Article  CAS  PubMed  Google Scholar 

  21. Bamber L, Harding M, Monné M et al (2007) The yeast mitochondrial ADP/ATP carrier functions as a monomer in mitochondrial membranes. Proc Natl Acad Sci U S A 104:10830–10834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Newstead S, Ferrandon S, Iwata S (2008) Rationalizing α-helical membrane protein crystallization. Protein Sci 17:466–472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Landau EM, Rosenbusch JP (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci U S A 93:14532–14535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lindblom G, Rilfors L (1989) Cubic phases and isotropic structures formed by membrane lipids: possible biological relevance. Biochim Biophys Acta 988:221–256

    Article  CAS  Google Scholar 

  25. Chiu ML, Nollert P, Loewen MEC et al (2000) Crystallization in cubo: general applicability to membrane proteins. Acta Crystallogr D Biol Crystallogr 56:781–784

    Article  CAS  PubMed  Google Scholar 

  26. Nollert P, Qiu H, Caffrey M et al (2001) Molecular mechanism for the crystallization of bacteriorhodopsin in lipidic cubic phases. FEBS Lett 504:179–186

    Article  CAS  PubMed  Google Scholar 

  27. Chung H, Caffrey M (1994) The curvature elastic-energy function of the lipid-water cubic mesophase. Nature 368:224–226

    Article  CAS  PubMed  Google Scholar 

  28. Chung H, Caffrey M (1994) The neutral area surface of the cubic mesophase: location and properties. Biophys J 66:377–381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Caffrey M, Li D, Dukkipati A (2012) Membrane protein structure determination using crystallography and lipidic mesophases: recent advances and successes. Biochemistry 51:6266–6288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Seddon JM, Templer RH, Warrender NA et al (1997) Phosphatidylcholine-fatty acid membranes: effects of headgroup hydration on the phase behaviour and structural parameters of the gel and inverse hexagonal (HII) phases. Biochim Biophys Acta 1327:131–147

    Article  CAS  PubMed  Google Scholar 

  31. Esnouf RM, Ren J, Garman EF et al (1998) Continuous and discontinuous changes in the unit cell of HIV-1 reverse transcriptase crystals on dehydration. Acta Crystallogr D Biol Crystallogr 54:938–953

    Article  CAS  PubMed  Google Scholar 

  32. Heras B, Martin JL (2005) Post-crystallization treatments for improving diffraction quality of protein crystals. Acta Crystallogr D Biol Crystallogr 61:1173–1180

    Article  PubMed  Google Scholar 

  33. Krauss IR, Sica F, Mattia CA, Merlino A (2012) Increasing the X-ray diffraction power of protein crystals by dehydration: the case of bovine serum albumin and a survey of literature data. Int J Mol Sci 13:3782–3800

    Article  CAS  PubMed Central  Google Scholar 

  34. Hu NJ, Iwata S, Cameron AD, Drew D (2011) Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT. Nature 478:408–411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. McCusker EC, Bagnéris C, Naylor CE et al (2012) Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. Nat Commun 3:1102

    Article  PubMed Central  PubMed  Google Scholar 

  36. Douangamath A, Aller P, Lukacik P et al (2013) Using high-throughput in situ plate screening to evaluate the effect of dehydration on protein crystals. Acta Crystallogr D Biol Crystallogr 69:920–923

    Article  CAS  PubMed  Google Scholar 

  37. Timmins PA, Hauk J, Wacker T, Welte W (1991) The influence of heptane-1, 2, 3-triol on the size and shape of LDAO micelles Implications for the crystallisation of membrane proteins. FEBS Lett 280:115–120

    Article  CAS  PubMed  Google Scholar 

  38. Schertler GF, Bartunik HD, Michel H, Oesterhelt D (1993) Orthorhombic crystal form of bacteriorhodopsin nucleated on benzamidine diffracting to 3.6 Å resolution. J Mol Biol 234:156

    Article  CAS  PubMed  Google Scholar 

  39. Timmins P, Pebay-Peyroula E, Welte W (1994) Detergent organisation in solutions and in crystals of membrane proteins. Biophys Chem 53:27–36

    Article  CAS  PubMed  Google Scholar 

  40. Qiu H, Caffrey M (2000) The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials 21:223–234

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the use of the Membrane Protein Laboratory funded by the Wellcome Trust (099165/Z/12/Z) at the Diamond Light Source. We also would like to thank to Mr. Mathew Jennions and Mr. James Birch for the fruitful discussions and all the MX beamline scientists at Diamond Light Source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Moraes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Moraes, I., Archer, M. (2015). Methods for the Successful Crystallization of Membrane Proteins. In: Owens, R. (eds) Structural Proteomics. Methods in Molecular Biology, vol 1261. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2230-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2230-7_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2229-1

  • Online ISBN: 978-1-4939-2230-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics