Advertisement

Dynamics of the Spb4 Interactome Monitored by Affinity Purification

  • Juan José García-Gómez
  • Simon Lebaron
  • Yves Henry
  • Jesús de la CruzEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1259)

Abstract

RNA helicases constitute the largest class of NTPases involved in ribosome biogenesis, a fundamental process that has been best characterized in the eukaryotic model organism Saccharomyces cerevisiae. In yeast, genetic and biochemical analyses indicate that these RNA helicases are energy-consuming modulators of local structures inside pre-ribosomal particles that actively promote the establishment or dissociation of snoRNA:pre-rRNA base pairings, the activity of certain pre-rRNA nucleases, and/or the acquisition of pre-rRNA folds required for the recruitment or release of ribosome assembly factors and the stable assembly of ribosomal proteins. Despite significant recent advances, the precise molecular functions of RNA helicases involved in ribosome biogenesis remain largely elusive. In recent years, the purification and compositional analysis of distinct pre-ribosomal particles via affinity purification methods has been established as one of the most useful techniques to explore the yeast ribosome biogenesis pathway. In this chapter, we describe the use of different affinity purification methods to study the physical environment of RNA helicases involved in ribosome biogenesis, using as an example the putative RNA helicase Spb4 required for 60S ribosomal subunit biogenesis.

Key words

Dominant-negative mutation IgG-Sepharose precipitation GFP-trap Ribosome biogenesis RNA helicase TAP-Tandem affinity purification Yeast 

Notes

Acknowledgements

We are indebted to Carine Froment and Bernard Monsarrat (Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse Paul Sabatier, France) for their valuable work on the compositional analysis of TAP-purified complexes. This work was supported by grants from the Spanish Ministry of Science and Innovation (MICINN) and ERDF (BFU2007-60151, BFU2010-15690 and HF2006-0153), and the Andalusian Government (BIO-271 and P08-CVI-03508) to J.d.l.C. and from the CNRS, Université Paul Sabatier, the Ligue Nationale Contre le Cancer (Equipe labellisée), the Agence Nationale de la Recherche, and the EGIDE Picasso Programme to Y.H.

References

  1. 1.
    Kressler D, Hurt E, Bassler J (2010) Driving ribosome assembly. Biochim Biophys Acta 1803:673–683PubMedCrossRefGoogle Scholar
  2. 2.
    Henras AK, Soudet J, Gerus M et al (2008) The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci 65:2334–2359PubMedCrossRefGoogle Scholar
  3. 3.
    Woolford JL Jr, Baserga SJ (2013) Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 195:643–681PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Axt K, French SL, Beyer AL, Tollervey D (2014) Kinetic analysis demonstrates a requirement for the Rat1 exonuclease in cotranscriptional Pre-rRNA cleavage. PLoS One 9:e85703PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Kos M, Tollervey D (2010) Yeast pre-rRNA processing and modification occur cotranscriptionally. Mol Cell 37:809–820PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Martin R, Straub AU, Doebele C, Bohnsack MT (2012) DExD/H-box RNA helicases in ribosome biogenesis. RNA Biol 10:4–18PubMedCrossRefGoogle Scholar
  7. 7.
    Rodríguez-Galán O, García-Gómez JJ, de la Cruz J (2013) Yeast and human RNA helicases involved in ribosome biogenesis: current status and perspectives. Biochim Biophys Acta 1829:775–790PubMedCrossRefGoogle Scholar
  8. 8.
    de la Cruz J, Kressler D, Linder P (2004) Ribosomal subunit assembly. In: Olson MOJ (ed) Nucleolus. Kluwer Academic, Georgetown, pp 258–285, Landes Bioscience/eurekah.comGoogle Scholar
  9. 9.
    Rodríguez-Mateos M, García-Gómez JJ, Francisco-Velilla R et al (2009) Role and dynamics of the ribosomal protein P0 and its related trans-acting factor Mrt4 during ribosome assembly in Saccharomyces cerevisiae. Nucleic Acids Res 37:7519–7532PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Saveanu C, Namane A, Gleizes PE et al (2003) Sequential protein association with nascent 60S ribosomal particles. Mol Cell Biol 23:4449–4460PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Leidig C, Thoms M, Holdermann I et al (2014) 60S ribosome biogenesis requires rotation of the 5S ribonucleoprotein particle. Nat Commun 5:3491PubMedCrossRefGoogle Scholar
  12. 12.
    Schäfer T, Maco B, Petfalski E et al (2006) Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit. Nature 441:651–655PubMedCrossRefGoogle Scholar
  13. 13.
    Hierlmeier T, Merl J, Sauert M et al (2012) Rrp5p, Noc1p and Noc2p form a protein module which is part of early large ribosomal subunit precursors in S. cerevisiae. Nucleic Acids Res 41:1191–1210PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Miles TD, Jakovljevic J, Horsey EW et al (2005) Ytm1, Nop7, and Erb1 form a complex necessary for maturation of yeast 66S preribosomes. Mol Cell Biol 25:10419–10432PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Lebaron S, Froment C, Fromont-Racine M et al (2005) The splicing ATPase Prp43p is a component of multiple preribosomal particles. Mol Cell Biol 25:9269–9282PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    LaCava J, Houseley J, Saveanu C et al (2005) RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121:713–724PubMedCrossRefGoogle Scholar
  17. 17.
    de la Cruz J, Kressler D, Rojo M et al (1998) Spb4p, an essential putative RNA helicase, is required for a late step in the assembly of 60S ribosomal subunits in Saccharomyces cerevisiae. RNA 4:1268–1281PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    García-Gómez JJ, Lebaron S, Froment C et al (2011) Dynamics of the putative RNA helicase Spb4 during ribosome assembly in Saccharomyces cerevisiae. Mol Cell Biol 31:4156–4164PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Venema J, Planta RJ, Raué HA (1998) In vivo mutational analysis of ribosomal RNA in Saccharomyces cerevisiae. In: Martin R (ed) Protein synthesis: methods and protocols, vol 77, Methods in molecular biology. Humana, Totowa, NJ, pp 257–270Google Scholar
  20. 20.
    Babiano R, de la Cruz J (2010) Ribosomal protein L35 is required for 27SB pre-rRNA processing in Saccharomyces cerevisiae. Nucleic Acids Res 38:5177–5192PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    García-Gómez JJ, Fernández-Pevida A, Lebaron S et al (2014) Final pre-40S maturation depends on the functional integrity of the 60S subunit ribosomal protein L3. PLoS Genet 10:e1004205PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    García-Gómez JJ, Babiano R, Lebaron S et al (2011) Nop6, a component of 90S pre-ribosomal particles, is required for 40S ribosomal subunit biogenesis in Saccharomyces cerevisiae. RNA Biol 8:112–124PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Juan José García-Gómez
    • 1
  • Simon Lebaron
    • 2
  • Yves Henry
    • 3
  • Jesús de la Cruz
    • 1
    Email author
  1. 1.Departamento de Genética, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSICUniversidad de SevillaSevillaSpain
  2. 2.Laboratoire de Cristallographie et RMN BiologiquesCNRS/Université Paris DescartesParisFrance
  3. 3.Laboratoire de Biologie Moléculaire Eucaryote, Equipe labellisée Ligue Contre le CancerCNRS/Université Toulouse Paul SabatierToulouseFrance

Personalised recommendations