Skip to main content

Happy Birthday: 25 Years of DEAD-Box Proteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1259))

Abstract

RNA helicases of the DEAD-box family are found in all eukaryotes, most bacteria and many archaea. They play important roles in rearranging RNA–RNA and RNA–protein interactions. DEAD-box proteins are ATP-dependent RNA binding proteins and RNA-dependent ATPases. The first helicases of this large family of proteins were described in the 1980s. Since then our perception of these proteins has dramatically changed. From bona fide helicases, they became RNA binding proteins that separate duplex RNAs, in a local manner, by binding and bending the target RNA. In the present review we describe some of the experiments that were important milestones in the life of DEAD-box proteins since their birth 25 years ago.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fairman-Williams ME, Guenther UP, Jankowsky E (2010) SF1 and SF2 helicases: family matters. Curr Opin Struct Biol 20:313–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Linder P, Jankowsky E (2011) From unwinding to clamping – the DEAD box RNA helicase family. Nat Rev Mol Cell Biol 12:505–516

    Article  CAS  PubMed  Google Scholar 

  3. Hashimoto Y, Lawrence PO (2005) Comparative analysis of selected genes from Diachasmimorpha longicaudata entomopoxvirus and other poxviruses. J Insect Physiol 51:207–220

    Article  CAS  PubMed  Google Scholar 

  4. Fischer MG, Allen MJ, Wilson WH et al (2010) Giant virus with a remarkable complement of genes infects marine zooplankton. Proc Natl Acad Sci U S A 107:19508–19513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kosowski TR, Keys HR, Quan TK et al (2009) DExD/H-box Prp5 protein is in the spliceosome during most of the splicing cycle. RNA 15:1345–1362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Schroder M (2010) Human DEAD-box protein 3 has multiple functions in gene regulation and cell cycle control and is a prime target for viral manipulation. Biochem Pharmacol 79:297–306

    Article  CAS  PubMed  Google Scholar 

  7. Tieg B, Krebber H (2013) Dbp5 – from nuclear export to translation. Biochim Biophys Acta 1829:791–798

    Article  CAS  PubMed  Google Scholar 

  8. Lasko P (2013) The DEAD-box helicase Vasa: evidence for a multiplicity of functions in RNA processes and developmental biology. Biochim Biophys Acta 1829:810–816

    Article  CAS  PubMed  Google Scholar 

  9. Rogers GW, Komar AA, Merrick WC (2002) eIF4A: the godfather of the DEAD-box helicases. Prog Nucl Acids Res 72:307–331

    Article  CAS  Google Scholar 

  10. Grifo JA, Tahara SM, Leis JP et al (1982) Characterization of eukaryotic initiation factor 4A, a protein involved in ATP-dependent binding of globin mRNA. J Biol Chem 257:5246–5252

    CAS  PubMed  Google Scholar 

  11. Grifo JA, Abramson RD, Satler CA et al (1984) RNA-stimulated ATPase activity of eukaryotic initiation factors. J Biol Chem 259:8648–8654

    CAS  PubMed  Google Scholar 

  12. Ray BK, Lawson TG, Kramer JC et al (1985) ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors. J Biol Chem 260:7651–7658

    CAS  PubMed  Google Scholar 

  13. Nielsen PJ, McMaster GK, Trachsel H (1985) Cloning of eukaryotic protein synthesis initiation factor genes: isolation and characterization of cDNA clones encoding factor eIF-4A. Nucleic Acids Res 13:6867–6880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Linder P, Lasko PF, Ashburner M et al (1989) Birth of the D-E-A-D box. Nature 337:121–122

    Article  CAS  PubMed  Google Scholar 

  15. Linder P, Slonimski PP (1989) An essential yeast protein, encoded by duplicated genes TIF1 and TIF2 and homologous to the mammalian translation initiation factor eIF-4A, can suppress a mitochondrial missense mutation. Proc Natl Acad Sci U S A 86:2286–2290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Leroy P, Alzari P, Sassoon D et al (1989) The protein encoded by a murine male germ cell-specific transcript is a putative ATP-dependent RNA helicase. Cell 57:549–559

    Article  CAS  PubMed  Google Scholar 

  17. Lasko PF, Ashburner M (1988) The product of the Drosophila gene vasa is very similar to eukaryotic initiation factor-4A. Nature 335:611–617

    Article  CAS  PubMed  Google Scholar 

  18. Ford MJ, Anton IA, Lane DP (1988) Nuclear protein with sequence homology to translation initiation factor eIF-4A. Nature 332:736–738

    Article  CAS  PubMed  Google Scholar 

  19. Seraphin B, Simon M, Boulet A et al (1989) Mitochondrial splicing requires a protein from a novel helicase family. Nature 337:84–87

    Article  CAS  PubMed  Google Scholar 

  20. Nishi K, Morel-Deville F, Hershey JWB et al (1988) An eIF-4A-like protein is a suppressor of an Escherichia coli mutant defective in 50S ribosomal subunit assembly. Nature 336:496–498, Nature 340, 246, and correction

    Article  CAS  PubMed  Google Scholar 

  21. Fuller-Pace FV, Nicol SM, Reid AD et al (1993) DbpA: a DEAD box protein specifically activated by 23S rRNA. EMBO J 12:3619–3626

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Chan K, Delfert D, Junger KD (1986) A direct colorometric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157:375–380

    Article  CAS  PubMed  Google Scholar 

  23. Pugh GE, Nicol SM, Fuller-Pace FV (1999) Interaction of the Escherichia coli DEAD box protein DbpA with 23S ribosomal RNA. J Mol Biol 292:771–778

    Article  CAS  PubMed  Google Scholar 

  24. Iost I, Dreyfus M, Linder P (1999) Ded1p, a DEAD-box protein required for translation initation in Saccharomyces cerevisiae, is an RNA helicase. J Biol Chem 274:17677–17683

    Article  CAS  PubMed  Google Scholar 

  25. Panuska JR, Goldthwait DA (1980) A DNA-dependent ATPase from T4-infected Escherichia coli. Purification and properties of a 63,000-dalton enzyme and its conversion to a 22,000-dalton form. J Biol Chem 255:5208–5214

    CAS  PubMed  Google Scholar 

  26. Cordin O, Banroques J, Tanner NK et al (2006) The DEAD-box protein family of RNA helicases. Gene 367:17–37

    Article  CAS  PubMed  Google Scholar 

  27. Buckstein MH, He J, Rubin H (2008) Characterization of nucleotide pools as a function of physiological state in Escherichia coli. J Bacteriol 190:718–726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Ando T, Imamura H, Suzuki R et al (2012) Visualization and measurement of ATP levels in living cells replicating hepatitis C virus genome RNA. PLoS Pathog 8:e1002561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Weirich CS, Erzberger JP, Flick JS et al (2006) Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nat Cell Biol 8:668–676

    Article  CAS  PubMed  Google Scholar 

  30. Hardin JW, Hu YX, McKay DB (2010) Structure of the RNA binding domain of a DEAD-box helicase bound to its ribosomal RNA target reveals a novel mode of recognition by an RNA recognition motif. J Mol Biol 402:412–427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Karginov FV, Caruthers JM, Hu Y et al (2005) YxiN is a modular protein combining a DEx(D/H) core and a specific RNA-binding domain. J Biol Chem 280:35499–35505

    Article  CAS  PubMed  Google Scholar 

  32. Hirling H, Scheffner M, Restle T et al (1989) RNA helicase activity associated with the human p68 protein. Nature 339:562–564

    Article  CAS  PubMed  Google Scholar 

  33. Rozen F, Edery I, Meerovitch K et al (1990) Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Mol Cell Biol 10:1134–1144

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Cartier G, Lorieux F, Allemand F et al (2010) Cold adaptation in DEAD-box proteins. Biochemistry 49:2636–2646

    Article  CAS  PubMed  Google Scholar 

  35. Rajkowitsch L, Schroeder R (2007) Coupling RNA annealing and strand displacement: a FRET-based microplate reader assay for RNA chaperone activity. Biotechniques 43:304–310

    Article  CAS  PubMed  Google Scholar 

  36. Chamot D, Colvin KR, Kujat-Choy SL et al (2005) RNA structural rearrangement via unwinding and annealing by the cyanobacterial RNA helicase, CrhR. J Biol Chem 280:2036–2044

    Article  CAS  PubMed  Google Scholar 

  37. Rossler OG, Straka A, Stahl H (2001) Rearrangement of structured RNA via branch migration structures catalysed by the highly related DEAD-box proteins p68 and p72. Nucleic Acids Res 29:2088–2096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Vogel J, Luisi BF (2011) Hfq and its constellation of RNA. Nat Rev Microbiol 9:578–589

    Article  CAS  PubMed  Google Scholar 

  39. Jankowsky E, Gross CH, Shumann S et al (2001) Active disruption of an RNA–protein interaction by a DExH/D RNA helicase. Science 291:121–125

    Article  CAS  PubMed  Google Scholar 

  40. Fairman M, Maroney PA, Wang W et al (2004) Protein displacement by DExH/D RNA helicases without duplex unwinding. Science 304:730–734

    Article  CAS  PubMed  Google Scholar 

  41. Chang TH, Arenas J, Abelson J (1990) Identification of five putative yeast RNA helicase genes. Proc Natl Acad Sci U S A 87:1571–1575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Chen JY-F, Stands L, Staley JP et al (2001) Specific alterations of U1-C protein or U1 small nuclear RNA can eliminate the requirement of Prp28p, an essential DEAD box splicing factor. Mol Cell 7:227–232

    Article  CAS  PubMed  Google Scholar 

  43. Kistler AL, Guthrie C (2001) Deletion of MUD2, the yeast homolog of U2AF65, can bypass the requirement for Sub2, an essential spliceosomal ATPase. Genes Dev 15:42–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Barta I, Iggo R (1995) Autoregulation of expression of the yeast Dbp2p “DEAD-box” protein is mediated by sequences in the conserved DBP2 intron. EMBO J 14:3800–3808

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Proux F, Dreyfus M, Iost I (2011) Identification of the sites of action of SrmB, a DEAD-box RNA helicase involved in Escherichia coli ribosome assembly. Mol Microbiol 82:300–311

    Article  CAS  PubMed  Google Scholar 

  46. Bloom LB (2006) Dynamics of loading the Escherichia coli DNA polymerase processivity clamp. Crit Rev Biochem Mol Biol 41:179–208

    Article  CAS  PubMed  Google Scholar 

  47. Sengoku T, Nureki O, Nakamura A et al (2006) Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125:287–300

    Article  CAS  PubMed  Google Scholar 

  48. Yang Q, Jankowsky E (2006) The DEAD-box protein Ded1 unwinds RNA duplexes by a mode distinct from translocating helicases. Nat Struct Mol Biol 13:981–986

    Article  CAS  PubMed  Google Scholar 

  49. Chen Y, Potratz JP, Tijerina P et al (2008) DEAD-box proteins can completely separate an RNA duplex using a single ATP. Proc Natl Acad Sci U S A 105:20203–20208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Liu F, Putnam A, Jankowsky E (2008) ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. Proc Natl Acad Sci U S A 105:20209–20214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Bizebard T, Ferlenghi I, Iost I et al (2004) Studies on three E. coli DEAD-box helicases point to an unwinding mechanism different from that of model DNA helicases. Biochemistry 43:7857–7866

    Article  CAS  PubMed  Google Scholar 

  52. Mallam AL, Del Campo M, Gilman B et al (2012) Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p. Nature 490:121–125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Ballut L, Marchadier B, Baguet A et al (2005) The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat Struct Mol Biol 12:861–869

    Article  CAS  PubMed  Google Scholar 

  54. Nielsen KH, Chamieh H, Andersen CB et al (2009) Mechanism of ATP turnover inhibition in the EJC. RNA 15:67–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Le Hir H, Andersen GR (2008) Structural insights into the exon junction complex. Curr Opin Struct Biol 18:112–119

    Article  PubMed  Google Scholar 

  56. Kressler D, de la Cruz J, Rojo M et al (1997) Fal1p is an essential DEAD-box protein involved in 40S-ribosomal-subunit biogenesis in Saccharomyces cerevisiae. Mol Cell Biol 17:7283–7294

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Hata H, Mitsui H, Liu H et al (1998) Dhh1p, a putative RNA helicase, associates with the general transcription factors Pop2p and Ccr4p from Saccharomyces cerevisiae. Genetics 148:571–579

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Tseng SS-I, Weaver PL, Liu Y et al (1998) Dbp5p, a cytosolic RNA helicase, is required for poly(A)+ RNA export. EMBO J 17:2651–2662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Snay-Hodge CA, Colot HV, Goldstein AL et al (1998) Dbp5p/Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export. EMBO J 17:2663–2676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. He F, Jacobson A (1995) Identification of a novel component of the nonsense-mediated mRNA decay pathway by use of an interacting protein screen. Genes Dev 9:437–454

    Article  CAS  PubMed  Google Scholar 

  61. Iggo RD, Jamieson DJ, MacNeill SA et al (1991) p68 RNA helicase: identification of a nuclear form and cloning of related genes containing a conserved intron in yeasts. Mol Cell Biol 11:1326–1333

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Weaver PL, Sun C, Chang T-H (1997) Dbp3p, a putative RNA helicase in Saccharomyces cerevisiae, is required for efficient pre-rRNA processing predominantly at site A3. Mol Cell Biol 17:1354–1365

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Jamieson DJ, Rahe B, Pringle J et al (1991) A suppressor of a yeast splicing mutation (prp8-1) encodes a putative ATP-dependent RNA helicase. Nature 349:715–717

    Article  CAS  PubMed  Google Scholar 

  64. Jamieson DJ, Beggs JD (1991) A suppressor of yeast spp81/ded1 mutations encodes a very similar putative ATP-dependent RNA helicase. Mol Microbiol 5:805–812

    Article  CAS  PubMed  Google Scholar 

  65. O’Day CL, Chavanikamannil F, Abelson J (1996) 18S rRNA processing requires the RNA helicase-like protein Rrp3. Nucl Acids Res 24:3201–3207

    Article  PubMed Central  PubMed  Google Scholar 

  66. Daugeron MC, Linder P (2001) Characterization and mutational analysis of yeast Dbp8p, a putative RNA helicase involved in ribosome biogenesis. Nucl Acids Res 29:1144–1155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Song Y, Kim S, Kim J (1995) ROK1, a high-copy-number plasmid suppressor of kem1, encodes a putative ATP-dependent RNA helicase in Saccharomyces cerevisiae. Gene 166:151–154

    Article  CAS  PubMed  Google Scholar 

  68. Ripmaster TL, Vaughn GP, Woolford JL Jr (1992) A putative ATP-dependent RNA helicase involved in Saccharomyces cerevisiae ribosome assembly. Proc Natl Acad Sci U S A 89:11131–11135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Burger F, Daugeron M-C, Linder P (2000) Dbp10p, a putative RNA helicase from Saccharomyces cerevisiae, is required for ribosome biogenesis. Nucl Acids Res 28:2315–2323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Dalbadie-McFarland G, Abelson J (1990) PRP5: a helicase-like protein required for mRNA splicing in yeast. Proc Natl Acad Sci U S A 87:4236–4240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Daugeron MC, Kressler D, Linder P (2001) Dbp9p, a putative ATP-dependent RNA helicase involved in 60S-ribosomal-subunit biogenesis, functionally interacts with Dbp6p. RNA 7:1317–1334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Liang W-Q, Clark JA, Fournier MJ (1997) The rRNA-processing function of the yeast U14 small nucleolar RNA can be rescued by a conserved RNA helicase-like protein. Mol Cell Biol 17:4124–4132

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Sachs AB, Davis RW (1990) Translation initiation and ribosomal biogenesis: involvement of a putative rRNA helicase and RPL46. Science 247:1077–1079

    Article  CAS  PubMed  Google Scholar 

  74. Strauss EJ, Guthrie C (1991) A cold-sensitive mRNA splicing mutant is a member of the RNA helicase gene family. Genes Dev 5:629–641

    Article  CAS  PubMed  Google Scholar 

  75. Emery B, De La Cruz J, Rocak S et al (2004) Has1p, a member of the DEAD-box family, is required for 40S ribosomal subunit biogenesis in Saccharomyces cerevisiae. Mol Microbiol 52:141–158

    Article  CAS  PubMed  Google Scholar 

  76. Wickner RB, Leibowitz MJ (1976) Chromosomal genes essential for replication of a double-stranded RNA plasmid of Saccharomyces cerevisiae: the killer character of yeast. J Mol Biol 105:427–443

    Article  CAS  PubMed  Google Scholar 

  77. Zagulski M, Kressler D, Becam AM et al (2003) Mak5p, which is required for the maintenance of the M1 dsRNA virus, is encoded by the yeast ORF YBR142w and is involved in the biogenesis of the 60S subunit of the ribosome. Mol Genet Genomics 270:216–224

    Article  CAS  PubMed  Google Scholar 

  78. Kressler D, de la Cruz J, Rojo M et al (1998) Dbp6p is an essential putative ATP-dependent RNA helicase required for 60S-ribosomal-subunit assembly in Saccharomyces cerevisiae. Mol Cell Biol 18:1855–1865

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Daugeron MC, Linder P (1998) Dbp7p, a putative ATP-dependent RNA helicase of Saccharomyces cerevisiae is required for 60S ribosomal subunit assembly. RNA 4:566–581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Schmidt U, Lehmann K, Stahl U (2002) A novel mitochondrial DEAD box protein (Mrh4) required for maintenance of mtDNA in Saccharomyces cerevisiae. FEM Yeast Res 2:267–276

    CAS  Google Scholar 

  81. Shiratori A, Shibata T, Arisawa M et al (1999) Systematic identification, classification, and characterization of the open-reading frames which encode novel helicase-related proteins in Saccharomyces cerevisiae by gene disruption and Northern analysis. YEAST 15:219–253

    Article  CAS  PubMed  Google Scholar 

  82. Toone WM, Rudd KE, Friesen JD (1991) deaD, a new Escherichia coli gene encoding a presumed ATP-dependent RNA helicase, can suppress a mutation in rpsB, the gene encoding ribosomal protein S2. J Bacteriol 173:3291–3302

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Kalman M, Murphy H, Cashel M (1991) rhlB, a new Escherichia coli K-12 gene with an RNA helicase-like protein sequence motif, one of at least five such possible genes in a prokaryote. New Biol 3:886–895

    CAS  PubMed  Google Scholar 

  84. Iggo R, Picksley S, Southgate J et al (1990) Identification of a putative RNA helicase in E. coli. Nucleic Acids Res 18:5413–5417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Ohmori H (1994) Structural analysis of the rhlE gene of Escherichia coli. Jpn J Genet 69:1–12

    Article  CAS  PubMed  Google Scholar 

  86. Raynal LC, Carpousis AJ (1999) Poly(A) polymerase I of Escherichia coli: characterization of the catalytic domain, an RNA binding site and regions for the interaction with proteins involved in mRNA degradation. Mol Microbiol 32:765–775

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to apologize to the many authors whose work could not be cited in this short review. It is obvious, that many other reports also contributed importantly to the development of the RNA helicase field. Work in the Linder laboratory was continuously and generously supported by the Swiss National Science Foundation and the University of Geneva. Work in the Fuller-Pace laboratory was supported by the Medical Research Council, the Breast Cancer Campaign, the Association for International Cancer Research and Cancer Research UK. The authors would like to thank the helicase community for a stimulating and collegial environment. We are grateful to our present and past collaborators for their precious contributions to our work and to Peter Redder for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patrick Linder or Frances Fuller-Pace .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Linder, P., Fuller-Pace, F. (2015). Happy Birthday: 25 Years of DEAD-Box Proteins. In: Boudvillain, M. (eds) RNA Remodeling Proteins. Methods in Molecular Biology, vol 1259. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2214-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2214-7_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2213-0

  • Online ISBN: 978-1-4939-2214-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics