Advertisement

Probing RNA Translocases with DNA

  • Kimberly A. Reynolds
  • Veronica M. Raney
  • Kevin D. RaneyEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1259)

Abstract

For some helicases, it is possible to investigate RNA translocase activity on DNA substrates because the enzyme acts on both substrates. Potassium permanganate (KMnO4) footprinting is a method used to chemically probe the conformation of DNA as well as the binding of proteins. Combining footprinting methods with rapid mixing methods that utilize a chemical quench-flow instrument can enable tracking of the translocase with nucleotide resolution.

Key words

RNA translocase Nonstructural protein 3 (NS3) Permanganate footprinting Fast footprinting 

References

  1. 1.
    Liang TJ, Ghany MG (2013) Current and future therapies for hepatitis C virus infection. N Engl J Med 368:1907–1917PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Raney KD, Sharma SD, Moustafa IM et al (2010) Hepatitis C virus non-structural protein 3 (HCV NS3): a multifunctional antiviral target. J Biol Chem 285:22725–22731PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Fairman-Williams ME, Guenther UP, Jankowsky E (2010) SF1 and SF2 helicases: family matters. Curr Opin Struct Biol 20:313–324PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Pyle AM (2008) Translocation and unwinding mechanisms of RNA and DNA helicases. Annu Rev Biophys 37:317–336PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang S, Grosse F (1997) Domain structure of human nuclear DNA helicase II (RNA helicase A). J Biol Chem 272:11487–11494PubMedCrossRefGoogle Scholar
  6. 6.
    Veno ST, Kulikowicz T, Pestana C et al (2011) The human Suv3 helicase interacts with replication protein A and flap endonuclease 1 in the nucleus. Biochem J 440:293–300PubMedCrossRefGoogle Scholar
  7. 7.
    Errington W, Wardell AD, McDonald S et al (1999) Subcellular localisation of NS3 in HCV-infected hepatocytes. J Med Virol 59:456–462PubMedCrossRefGoogle Scholar
  8. 8.
    Muramatsu S, Ishido S, Fujita T et al (1997) Nuclear localization of the NS3 protein of hepatitis C virus and factors affecting the localization. J Virol 71:4954–4961PubMedCentralPubMedGoogle Scholar
  9. 9.
    Levin MK, Wang YH, Patel SS (2004) The functional interaction of the hepatitis C virus helicase molecules is responsible for unwinding processivity. J Biol Chem 279:26005–26012PubMedCrossRefGoogle Scholar
  10. 10.
    Serebrov V, Pyle AM (2004) Periodic cycles of RNA unwinding and pausing by hepatitis C virus NS3 helicase. Nature 430:476–480PubMedCrossRefGoogle Scholar
  11. 11.
    Serebrov V, Beran RK, Pyle AM (2009) Establishing a mechanistic basis for the large kinetic steps of the NS3 helicase. J Biol Chem 284:2512–2521PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Tackett AJ, Chen Y, Cameron CE et al (2005) Multiple full-length NS3 molecules are required for optimal unwinding of oligonucleotide DNA in vitro. J Biol Chem 280:10797–10806PubMedCrossRefGoogle Scholar
  13. 13.
    Wang Q, Arnold JJ, Uchida A et al (2010) Phosphate release contributes to the rate-limiting step for unwinding by an RNA helicase. Nucleic Acids Res 38:1312–1324PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Rajagopal V, Gurjar M, Levin MK, Patel SS (2010) The protease domain increases the translocation stepping efficiency of the hepatitis C virus NS3-4A helicase. J Biol Chem 285:17821–17832PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Pang PS, Jankowsky E, Planet PJ, Pyle AM (2002) The hepatitis C viral NS3 protein is a processive DNA helicase with cofactor enhanced RNA unwinding. EMBO J 21:1168–1176PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Kim JL, Morgenstern KA, Lin C et al (1996) Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell 87:343–355PubMedCrossRefGoogle Scholar
  17. 17.
    Gu M, Rice CM (2010) Three conformational snapshots of the hepatitis C virus NS3 helicase reveal a ratchet translocation mechanism. Proc Natl Acad Sci U S A 107:521–528PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Appleby TC, Anderson R, Fedorova O et al (2011) Visualizing ATP-dependent RNA translocation by the NS3 helicase from HCV.J Mol Biol 405:1139–1153PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Bui CT, Rees K, Cotton RG (2003) Permanganate oxidation reactions of DNA: perspective in biological studies. Nucleosides Nucleotides Nucleic Acids 22:1835–1855PubMedCrossRefGoogle Scholar
  20. 20.
    Raney VM, Reynolds KA, Harrison MK et al (2012) Binding by the hepatitis C virus NS3 helicase partially melts duplex DNA. Biochemistry 51:7596–7607PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Shcherbakova I, Mitra S, Beer RH et al (2006) Fast Fenton footprinting: a laboratory-based method for the time-resolved analysis of DNA, RNA and proteins. Nucleic Acids Res 34:e48PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Tackett AJ, Wei L, Cameron CE et al (2001) Unwinding of nucleic acids by HCV NS3 helicase is sensitive to the structure of the duplex. Nucleic Acids Res 29:565–572PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Morris PD, Raney KD (1999) DNA helicases displace streptavidin from biotin-labeled oligonucleotides. Biochemistry 38:5164–5171PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Kimberly A. Reynolds
    • 1
  • Veronica M. Raney
    • 1
  • Kevin D. Raney
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Arkansas for Medical SciencesLittle RockUSA

Personalised recommendations