Advertisement

Measuring Helicase Inhibition of the DEAD-Box Protein Dbp2 by Yra1

  • Wai Kit Ma
  • Elizabeth J. TranEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1259)

Abstract

Despite the highly conserved helicase core, individual DEAD-box proteins are specialized in diverse RNA metabolic processes. One mechanism that determines DEAD-box protein specificity is enzymatic regulation by other protein cofactors. In this chapter, we describe a protocol for purifying the Saccharomyces cerevisiae DEAD-box RNA helicase Dbp2 and RNA-binding protein Yra1 and subsequent analysis of helicase regulation. The experiments described here can be adapted to other RNA helicases and their purified cofactor(s).

Key words

DEAD-box RNA Helicase Unwinding Annealing Duplex Yeast 

Notes

Acknowledgements

We thank members of the Tran lab for constructive criticism and detailed analysis of experimental methods. This work was supported by NIH grant R01GM097332 to E.J.T. and by P30 CA023168.

References

  1. 1.
    Linder P, Fuller-Pace FV (2013) Looking back on the birth of DEAD-box RNA helicases. Biochim Biophys Acta 1829:750–755PubMedCrossRefGoogle Scholar
  2. 2.
    Putnam AA, Jankowsky E (2013) DEAD-box helicases as integrators of RNA, nucleotide and protein binding. Biochim Biophys Acta 1829:884–893PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Jankowsky E (2011) RNA helicases at work: binding and rearranging. Trends Biochem Sci 36:19–29PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Jarmoskaite I, Russell R (2011) DEAD-box proteins as RNA helicases and chaperones. Wiley Interdiscip Rev RNA 2:135–152PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Klostermeier D, Rudolph MG (2009) A novel dimerization motif in the C-terminal domain of the Thermus thermophilus DEAD box helicase Hera confers substantial flexibility. Nucleic Acids Res 37:421–430PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Tsu CA, Kossen K, Uhlenbeck OC (2001) The Escherichia coli DEAD protein DbpA recognizes a small RNA hairpin in 23S rRNA. RNA 7:702–709PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Fuller-Pace FV, Nicol SM, Reid AD et al (1993) DbpA: a DEAD box protein specifically activated by 23s rRNA. EMBO J 12:3619–3626PubMedCentralPubMedGoogle Scholar
  8. 8.
    Nicol SM, Fuller-Pace FV (1995) The “DEAD box” protein DbpA interacts specifically with the peptidyltransferase center in 23S rRNA. Proc Natl Acad Sci U S A 92:11681–11685PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Hardin JW, Hu YX, McKay DB (2010) Structure of the RNA binding domain of a DEAD-box helicase bound to its ribosomal RNA target reveals a novel mode of recognition by an RNA recognition motif. J Mol Biol 402:412–427PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Mohr G, Del Campo M, Mohr S et al (2008) Function of the C-terminal domain of the DEAD-box protein Mss116p analyzed in vivo and in vitro. J Mol Biol 375:1344–1364PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Mallam AL, Jarmoskaite I, Tijerina P et al (2011) Solution structures of DEAD-box RNA chaperones reveal conformational changes and nucleic acid tethering by a basic tail. Proc Natl Acad Sci U S A 108:12254–12259PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Bolger TA, Wente SR (2011) Gle1 is a multifunctional DEAD-box protein regulator that modulates Ded1 in translation initiation. J Biol Chem 286:39750–39759PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Granneman S, Lin C, Champion EA et al (2006) The nucleolar protein Esf2 interacts directly with the DExD/H box RNA helicase, Dbp8, to stimulate ATP hydrolysis. Nucleic Acids Res 34:3189–3199PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Hilbert M, Kebbel F, Gubaev A et al (2011) eIF4G stimulates the activity of the DEAD box protein eIF4A by a conformational guidance mechanism. Nucleic Acids Res 39:2260–2270PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Ma WK, Cloutier SC, Tran EJ (2013) The DEAD-box protein Dbp2 functions with the RNA-binding protein Yra1 to promote mRNP assembly. J Mol Biol 425:3824–3838PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Johnson SA, Cubberley G, Bentley DL (2009) Cotranscriptional recruitment of the mRNA export factor Yra1 by direct interaction with the 3′ end processing factor Pcf11. Mol Cell 33:215–226PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Yang Q, Del Campo M, Lambowitz AM et al (2007) DEAD-box proteins unwind duplexes by local strand separation. Mol Cell 28:253–263PubMedCrossRefGoogle Scholar
  18. 18.
    Chen Y, Potratz JP, Tijerina P et al (2008) DEAD-box proteins can completely separate an RNA duplex using a single ATP. Proc Natl Acad Sci U S A 105:20203–20208PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Moreira BG, You Y, Behlke MA et al (2005) Effects of fluorescent dyes, quenchers, and dangling ends on DNA duplex stability. Biochem Biophys Res Commun 327:473–484PubMedCrossRefGoogle Scholar
  20. 20.
    Young C, Karbstein K (2012) Analysis of cofactor effects on RNA helicases. Methods Enzymol 511:213–237PubMedCrossRefGoogle Scholar
  21. 21.
    Portman DS, O’Connor JP, Dreyfuss G (1997) YRA1, an essential Saccharomyces cerevisiae gene, encodes a novel nuclear protein with RNA annealing activity. RNA 3:527–537PubMedCentralPubMedGoogle Scholar
  22. 22.
    Yang Q, Jankowsky E (2005) ATP- and ADP-dependent modulation of RNA unwinding and strand annealing activities by the DEAD-box protein DED1. Biochemistry 44:13591–13601PubMedCrossRefGoogle Scholar
  23. 23.
    Spahr PF, Hollingworth BR (1961) Purification and mechanism of action of ribonuclease from Escherichia Coli ribosomes. J Biol Chem 236:823–831Google Scholar
  24. 24.
    Grossman TH, Kawasaki ES, Punreddy SR et al (1998) Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. Gene 209:95–103PubMedCrossRefGoogle Scholar
  25. 25.
    Jankowsky E, Putnam A (2010) Duplex unwinding with DEAD-box proteins. Methods Mol Biol 587:245–264PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of BiochemistryPurdue UniversityWest LafayetteUSA
  2. 2.Purdue Center for Cancer ResearchPurdue UniversityWest LafayetteUSA

Personalised recommendations