Skip to main content

Bioinformatics and Biochemical Methods to Study the Structural and Functional Elements of DEAD-Box RNA Helicases

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1259))

Abstract

DEAD-box RNA helicases have core structures consisting of two, tandemly linked, RecA-like domains that contain all of the conserved motifs involved in binding ATP and RNA, and that are needed for the enzymatic activities. The conserved sequence motifs and structural homology indicate that these proteins share common origins and underlining functionality. Indeed, the purified proteins generally act as ATP-dependent RNA-binding proteins and RNA-dependent ATPases in vitro, but for the most part without the substrate specificity or enzymatic regulation that exists in the cell. We are interested in understanding the relationships between the conserved motifs and structures that confer the commonly shared features, and we are interested in understanding how modifications of the core structure alter the enzymatic properties. We use sequence alignments and structural modeling to reveal regions of interest, which we modify by classical molecular biological techniques (mutations and deletions). We then use various biochemical techniques to characterize the purified proteins and their variants for their ATPase, RNA binding, and RNA unwinding activities to determine the functional roles of the different elements. In this chapter, we describe the methods we use to design our constructs and to determine their enzymatic activities in vitro.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Byrd AK, Raney KD (2012) Superfamily 2 helicases. Front Biosci (Landmark Ed) 17:2070–2088

    Article  Google Scholar 

  2. Fairman-Williams ME, Guenther UP, Jankowsky E (2010) SF1 and SF2 helicases: family matters. Curr Opin Struct Biol 20:313–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Pyle AM (2008) Translocation and unwinding mechanisms of RNA and DNA helicases. Annu Rev Biophys 37:317–336

    Article  CAS  PubMed  Google Scholar 

  4. Singleton MR, Dillingham MS, Wigley DB (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76:23–50

    Article  CAS  PubMed  Google Scholar 

  5. Jacob F (1977) Evolution and tinkering. Science 196:1161–1166

    Article  CAS  PubMed  Google Scholar 

  6. Cordin O, Banroques J, Tanner NK et al (2006) The DEAD-box protein family of RNA helicases. Gene 367:17–37

    Article  CAS  PubMed  Google Scholar 

  7. Linder P, Jankowsky E (2011) From unwinding to clamping – the DEAD box RNA helicase family. Nat Rev Mol Cell Biol 12:505–516

    Article  CAS  PubMed  Google Scholar 

  8. Banroques J, Cordin O, Doere M et al (2011) Analyses of the functional regions of DEAD-box RNA “helicases” with deletion and chimera constructs tested in vivo and in vitro. J Mol Biol 413:451–472

    Article  CAS  PubMed  Google Scholar 

  9. Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Apweiler R, Martin MJ, O’Donovan C et al (2011) Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res 39:D214–D219

    Article  Google Scholar 

  11. Rost B, Yachdav G, Liu J (2004) The PredictProtein server. Nucleic Acids Res 32:W321–W326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30:S162–S173

    Article  PubMed  Google Scholar 

  13. Hirose S, Shimizu K, Kanai S et al (2007) POODLE-L: a two-level SVM prediction system for reliably predicting long disordered regions. Bioinformatics 23:2046–2053

    Article  CAS  PubMed  Google Scholar 

  14. Linding R, Russell RB, Neduva V et al (2003) GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 31:3701–3708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Obenauer JC, Cantley LC, Yaffe MB (2003) Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31:3635–3641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Finn RD, Mistry J, Tate J et al (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+ -stimulated ATPase activity. Anal Biochem 157:375–380

    Article  CAS  PubMed  Google Scholar 

  18. Pugh GE, Nicol SM, Fuller-Pace FV (1999) Interaction of the Escherichia coli DEAD box protein DbpA with 23S ribosomal RNA. J Mol Biol 292:771–778

    Article  CAS  PubMed  Google Scholar 

  19. Panuska JR, Goldthwait DA (1980) A DNA-dependent ATPase from T4-infected Escherichia coli. Purification and properties of a 63,000-dalton enzyme and its conversion to a 22,000-dalton form. J Biol Chem 255:5208–5214

    CAS  PubMed  Google Scholar 

  20. Kiianitsa K, Solinger JA, Heyer WD (2003) NADH-coupled microplate photometric assay for kinetic studies of ATP-hydrolyzing enzymes with low and high specific activities. Anal Biochem 321:266–271

    Article  CAS  PubMed  Google Scholar 

  21. Tanner NK, Cordin O, Banroques J et al (2003) The Q motif: a newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis. Mol Cell 11:127–138

    Article  CAS  PubMed  Google Scholar 

  22. Turner DH, Mathews DH (2010) NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res 38:D280–D282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Sengoku T, Nureki O, Nakamura A et al (2006) Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125:287–300

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Centre National de la Recherche Scientifique, by the HelicaRN [2010 BLAN 1503 01] and HeliDEAD grants [ANR-13-BSV8-0009-01] from the Agence Nationale de la Recherche, by a Programme FPGG032 grant from the Pierre-Gilles de Gennes foundation, and by the Initiative d’Excellence program from the French State [Grant DYNAMO, ANR-11-LABX-0011-01].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kyle Tanner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Banroques, J., Tanner, N.K. (2015). Bioinformatics and Biochemical Methods to Study the Structural and Functional Elements of DEAD-Box RNA Helicases. In: Boudvillain, M. (eds) RNA Remodeling Proteins. Methods in Molecular Biology, vol 1259. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2214-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2214-7_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2213-0

  • Online ISBN: 978-1-4939-2214-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics