Skip to main content

Cleavable Self-Aggregating Tags (cSAT) for Protein Expression and Purification

  • Protocol
  • First Online:
Insoluble Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1258))

Abstract

Rapid protein expression and purification remains a critical technological need, in particular as the number of proteins being identified is exploding. In this chapter, we describe a simple and rapid scheme for expression and purification of recombinant proteins using Escherichia coli, by taking advantage of two self-aggregating peptide fusion tags 18A (EWLKAFYEKVLEKLKELF) and ELK16 (LELELKLKLELELKLK) that can drive target proteins into active protein aggregates in vivo. In practice, a target protein is fused at the N-terminus of the self-cleavable Mxe GyrA intein, which is followed by the 18A or ELK16 tag. The fusion protein is first expressed in the form of active aggregate and then separated by centrifugation upon cell lysis. Subsequently, the DTT-mediated intein self-cleavage reaction releases the target protein into solution. These cleavable self-aggregating tags (cSAT, intein-18A/ELK16) provide a quick and efficient route for the production of proteins with modest purity (around 90 % in the case of intein-ELK16). Two application examples are included in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prouty W, Karnovsky M, Goldberg A (1975) Degradation of abnormal proteins in Escherichia coli. Formation of protein inclusions in cells exposed to amino acid analogs. J Biol Chem 250:1112–1122

    CAS  PubMed  Google Scholar 

  2. Lilie H, Schwarz E, Rudolph R (1998) Advances in refolding of proteins produced in E. coli. Curr Opin Biotechnol 9:497–501

    Article  CAS  PubMed  Google Scholar 

  3. Achmueller C, Kaar W, Ahrer K et al (2007) Npro fusion technology to produce proteins with authentic N termini in E. coli. Nat Methods 4:1037–1043

    Article  CAS  Google Scholar 

  4. Lee JH, Kim JH, Hwang SW et al (2000) High-level expression of antimicrobial peptide mediated by a fusion partner reinforcing formation of inclusion bodies. Biochem Biophys Res Commun 277:575–580

    Article  CAS  PubMed  Google Scholar 

  5. Wei QD, Kim YS, Seo JH et al (2005) Facilitation of expression and purification of an antimicrobial peptide by fusion with baculoviral polyhedrin in Escherichia coli. Appl Environ Microbiol 71:5038–5043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Yamaguchi S, Yamamoto E, Mannen T et al (2013) Protein refolding using chemical refolding additives. Biotechnol J 8:17–31

    Article  CAS  PubMed  Google Scholar 

  7. Kyle S, Aggeli A, Ingham E et al (2010) Recombinant self-assembling peptides as biomaterials for tissue engineering. Biomaterials 31:9395–9405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Tokatlidis K, Dhurjati P, Millet J et al (1991) High activity of inclusion bodies formed in Escherichia coli overproducing Clostridium thermocellum endoglucanase D. FEBS Lett 282:205–208

    Article  CAS  PubMed  Google Scholar 

  9. Worrall DM, Goss NH (1989) The formation of biologically active beta-galactosidase inclusion bodies in Escherichia coli. Aust J Biotechnol 3:28–32

    CAS  PubMed  Google Scholar 

  10. García-Fruitós E, González-Montalbán N, Morell M et al (2005) Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb Cell Fact 4:27–32

    Article  PubMed Central  PubMed  Google Scholar 

  11. Vera A, González-Montalbán N, Arís A et al (2007) The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures. Biotechnol Bioeng 96:1101–1106

    Article  CAS  PubMed  Google Scholar 

  12. Wu W, Xing L, Zhou B et al (2011) Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli. Microb Cell Fact 10:9–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Xing L, Wu W, Zhou B et al (2011) Streamlined protein expression and purification using cleavable self-aggregating tags. Microb Cell Fact 10:42–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Zhou B, Xing L, Wu W et al (2012) Small surfactant-like peptides can drive soluble proteins into active aggregates. Microb Cell Fact 11:10–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Mitraki A (2010) Protein aggregation: from inclusion bodies to amyloid and biomaterials. In: McPherson A (ed) Advances in protein chemistry and structural biology, 1st edn. Elsevier-Academic, San Diego, pp 89–125

    Google Scholar 

  16. Volkmann G, Mootz HD (2012) Recent progress in intein research: from mechanism to directed evolution and applications. Cell Mol Life Sci 70:1185–1206

    Article  PubMed  Google Scholar 

  17. Telenti A, Southworth M, Alcaide F et al (1997) The Mycobacterium xenopi GyrA protein splicing element: characterization of a minimal. J Bacteriol 179:6378–6382

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Ge X, Yang DSC, Trabbic-Carlson K et al (2005) Self-cleavable stimulus responsive tags for protein purification without chromatography. J Am Chem Soc 127:11228–11229

    Article  CAS  PubMed  Google Scholar 

  19. Walker JM (2009) The bicinchoninic acid (BCA) assay for protein quantitation. In: Walker JM (ed) The protein protocols handbook, 2nd edn. Humana, New York, pp 11–15

    Chapter  Google Scholar 

  20. Winkler UK, Stuckmann M (1979) Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol 138:663–670

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Sakaue R, Kajiyama N (2003) Thermostabilization of bacterial fructosyl-amino acid oxidase by directed evolution. Appl Environ Microbiol 69:139–145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Gibson DG, Young L, Chuang RY et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  PubMed  Google Scholar 

  23. Xing L, Xu WH, Zhou BH et al (2013) Facile expression and purification of the antimicrobial peptide histatin 1 with a cleavable self-aggregating tag (cSAT) in Escherichia coli. Protein Expr Purif 88:248–253

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National High Tech Program of China (2006AA020203 and 2012AA022205B). We thank the publisher BioMed Central for permitting the use of Figs. 1, 2, and 3 in this chapter without the need for formal written permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanglin Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lin, Z., Zhao, Q., Zhou, B., Xing, L., Xu, W. (2015). Cleavable Self-Aggregating Tags (cSAT) for Protein Expression and Purification. In: García-Fruitós, E. (eds) Insoluble Proteins. Methods in Molecular Biology, vol 1258. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2205-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2205-5_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2204-8

  • Online ISBN: 978-1-4939-2205-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics