Skip to main content

Optimization of Culture Parameters and Novel Strategies to Improve Protein Solubility

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1258))

Abstract

The production of recombinant proteins, in soluble form in a prokaryotic expression system, still remains a challenge for the biotechnologist. Innovative strategies have been developed to improve protein solubility in various protein overexpressing hosts. In this chapter, we would focus on methods currently available and amenable to “desired modifications,” such as (a) the use of molecular chaperones; (b) the optimization of culture conditions; (c) the reengineering of a variety of host strains and vectors with affinity tags; and (d) optimal promoter strengths. All these parameters are evaluated with the primary objective of increasing the solubilization of recombinant protein(s) during overexpression in Escherichia coli.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sahdev S, Khattar SK, Saini KS (2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 307:249–264

    Article  CAS  PubMed  Google Scholar 

  2. Arya R, Bhattacharya A, Saini KS (2008) Dictyostelium discoideum—a promising expression system for the production of eukaryotic proteins. FASEB J 22:4055–4066

    Article  CAS  PubMed  Google Scholar 

  3. Khattar SK, Gulati P, Kundu PK et al (2007) Enhanced soluble production of biologically active recombinant human p38 mitogen-activated-protein kinase (MAPK) in Escherichia coli. Protein Pept Lett 14:756–760

    Article  CAS  PubMed  Google Scholar 

  4. Carrio MM, Villaverde A (2003) Role of molecular chaperones in inclusion body formation. FEBS Lett 537:215–221

    Article  CAS  PubMed  Google Scholar 

  5. de Marco A (2007) Protocol for preparing proteins with improved solubility by co-expressing with molecular chaperones in Escherichia coli. Nat Protoc 2:2632–2639

    Article  PubMed  Google Scholar 

  6. Nishihara K, Kanemori M, Kitagawa M et al (1998) Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl Environ Microbiol 64:1694–1699

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Sorensen HP, Mortensen KK (2005) Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact 4:1

    Article  PubMed Central  PubMed  Google Scholar 

  8. Folwarczna J, Moravec T, Plchova H et al (2012) Efficient expression of Human papillomavirus 16 E7 oncoprotein fused to C-terminus of Tobacco mosaic virus (TMV) coat protein using molecular chaperones in Escherichia coli. Protein Expr Purif 85:152–157

    Article  CAS  PubMed  Google Scholar 

  9. Betiku E (2006) Molecular chaperones involved in heterologous protein folding in Escherichia coli. Biotechnol Mol Biol 1:66–75

    Google Scholar 

  10. Guzzo J (2012) Biotechnical applications of small heat shock proteins from bacteria. Int J Biochem Cell B 44:1698–1705

    Article  CAS  Google Scholar 

  11. Ow DSW, Lim DYX, Nissom PM et al (2010) Co-expression of Skp and FkpA chaperones improves cell viability and alters the global expression of stress response genes during scFvD1.3 production. Microb Cell Fact 9:22

    Article  PubMed Central  PubMed  Google Scholar 

  12. Samuelson JC (2011) Recent developments in difficult protein expression: a guide to E. coli strains, promoters, and relevant host mutations. In: Heterologous gene expression in E. coli. Methods Mol Biol 705:195–209

    Article  CAS  PubMed  Google Scholar 

  13. Phillips TAVRA, Neidhardt FC (1984) lon gene product of Escherichia coli is a heat-shock protein. J Bacteriol 159:283–287

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Grodberg J, Dunn JJ (1988) ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol 170:1245–1253

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Prinz WA, Aslund F, Holmgren A et al (1997) The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272:15661–15667

    Article  CAS  PubMed  Google Scholar 

  16. Seidel HM, Pompliano DL, Knowles JR (1992) Phosphonate biosynthesis: molecular cloning of the gene for phosphoenolpyruvate mutase from Tetrahymena pyriformis and overexpression of the gene product in Escherichia coli. Biochemistry 31:2598–2608

    Article  CAS  PubMed  Google Scholar 

  17. Kane JF (1995) Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol 6:494–500

    Article  CAS  PubMed  Google Scholar 

  18. Bessette PH, Aslund F, Beckwith J et al (1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci U S A 96:13703–13708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Young CL, Britton ZT, Robinson AS (2012) Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol J 7:620–634

    Article  CAS  PubMed  Google Scholar 

  20. Raran-Kurussi S, Waugh DS (2012) The ability to enhance the solubility of its fusion partners is an intrinsic property of maltose-binding protein but their folding is either spontaneous or chaperone-mediated. PLoS One 7:e49589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. San-Miguel T, Perez-Bermudez P, Gavidia I (2013) Production of soluble eukaryotic recombinant proteins in E coli is favoured in early log-phase cultures induced at low temperature. SpringerPlus 2:89

    Article  PubMed Central  PubMed  Google Scholar 

  22. Pan SH, Malcolm BA (2000) Reduced background expression and improved plasmid stability with pET vectors in BL21(DE3). Biotechniques 29:1234–1238

    CAS  PubMed  Google Scholar 

  23. Cui SS, Lin XZ, Shen JH (2011) Effects of co-expression of molecular chaperones on heterologous soluble expression of the cold-active lipase Lip-948. Protein Expr Purif 77:166–172

    Article  CAS  Google Scholar 

  24. Voulgaridou GP, Mantso T, Chlichlia K et al (2013) Efficient E. coli expression strategies for production of soluble human crystallin ALDH3A1. PLoS One 8:e56582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Jhamb KSDK (2012) Production of soluble recombinant proteins in Escherichia coli: effects of process conditions and chaperone co-expression on cell growth and production of xylanase. Bioresour Technol 123:135–143

    Article  CAS  PubMed  Google Scholar 

  26. Yan X, Hu S, Guan YX, Yao SJ (2012) Coexpression of chaperonin GroEL/GroES markedly enhanced soluble and functional expression of recombinant human interferon-gamma in Escherichia coli. Appl Microbiol Biotechnol 93:1065–1074

    Article  CAS  PubMed  Google Scholar 

  27. Nausch H, Huckauf J, Koslowski R et al (2013) Recombinant production of human interleukin 6 in Escherichia coli. PLoS One 8:e54933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Martinez-Alonso M, Vera A, Villaverde A (2007) Role of the chaperone DnaK in protein solubility and conformational quality in inclusion body-forming Escherichia coli cells. FEMS Microbiol Lett 273:187–195

    Article  CAS  PubMed  Google Scholar 

  29. Levy R, Weiss R, Chen G et al (2001) Production of correctly folded Fab antibody fragment in the cytoplasm of Escherichia coli trxB gor mutants via the coexpression of molecular chaperones. Protein Expr Purif 23:338–347

    Article  CAS  PubMed  Google Scholar 

  30. Ronez FDN, Arbault P, Guzzo J (2012) Co-expression of the small heat shock protein, Lo18, with b-glucosidase in Escherichia coli improves solubilization and reveals various associations with overproduced heterologous protein, GroEL/ES. Biotechnol Lett 34:935–939

    Article  CAS  PubMed  Google Scholar 

  31. Kyratsous CA, Silverstein SJ, DeLong CR et al (2009) Chaperone-fusion expression plasmid vectors for improved solubility of recombinant proteins in Escherichia coli. Gene 440:9–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Su XY, Zhang S, Wang L et al (2009) Overexpression of IbpB enhances production of soluble active Streptomyces olivaceovirdis XynB in Escherichia coli. Biochem Biophys Res Commun 390:673–677

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Sonam Grover, Ms. Reema Singh, and Mr. Abdullah Sheikh for the literature assistance and helpful comments. We thank Mr. Ravi Bharadwaj and Ms. Pratibha Chanana for optimizing conditions for GNE expression in E. coli at low temperature and collecting the data for Fig. 1. We are grateful to the Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia, for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kulvinder S. Saini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Arya, R., Sabir, J.S.M., Bora, R.S., Saini, K.S. (2015). Optimization of Culture Parameters and Novel Strategies to Improve Protein Solubility. In: García-Fruitós, E. (eds) Insoluble Proteins. Methods in Molecular Biology, vol 1258. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2205-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2205-5_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2204-8

  • Online ISBN: 978-1-4939-2205-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics