Skip to main content

Overcoming the Solubility Problem in E. coli: Available Approaches for Recombinant Protein Production

  • Protocol
  • First Online:
Insoluble Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1258))

Abstract

Despite the importance of recombinant protein production in academy and industrial fields, many issues concerning the expression of soluble and homogeneous product are still unsolved. Although several strategies were developed to overcome these obstacles, at present there is no magic bullet that can be applied for all cases. Indeed, several key expression parameters need to be evaluated for each protein. Among the different hosts for protein expression, Escherichia coli is by far the most widely used. In this chapter, we review many of the different tools employed to circumvent protein insolubility problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sorensen HP (2010) Towards universal systems for recombinant gene expression. Microb Cell Fact 9:27

    PubMed Central  PubMed  Google Scholar 

  2. Huang CJ, Lin H, Yang X (2012) Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol 39:383–399

    CAS  PubMed  Google Scholar 

  3. Yang Z, Zhang L, Zhang Y et al (2011) Highly efficient production of soluble proteins from insoluble inclusion bodies by a two-step-denaturing and refolding method. PLoS One 6:e22981

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Correa A, Oppezzo P (2011) Tuning different expression parameters to achieve soluble recombinant proteins in E. coli: advantages of high-throughput screening. Biotechnol J 6:715–730

    CAS  PubMed  Google Scholar 

  5. Samuelson JC (2011) Recent developments in difficult protein expression: a guide to E. coli strains, promoters, and relevant host mutations. Methods Mol Biol 705:195–209

    CAS  PubMed  Google Scholar 

  6. Vincentelli R, Cimino A, Geerlof A et al (2011) High-throughput protein expression screening and purification in Escherichia coli. Methods 55:65–72

    CAS  PubMed  Google Scholar 

  7. Vincentelli R, Canaan S, Campanacci V et al (2004) High-throughput automated refolding screening of inclusion bodies. Protein Sci 13:2782–2792

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Foit L, Morgan GJ, Kern MJ et al (2009) Optimizing protein stability in vivo. Mol Cell 36:861–871

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Hart DJ, Waldo GS (2013) Library methods for structural biology of challenging proteins and their complexes. Curr Opin Struct Biol 23:403–408

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Artimo P, Jonnalagedda M, Arnold K et al (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40:W597–W603

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353

    CAS  PubMed  Google Scholar 

  12. Puigbo P, Guzman E, Romeu A et al (2007) OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res 35:W126–W131

    PubMed Central  PubMed  Google Scholar 

  13. Villalobos A, Ness JE, Gustafsson C et al (2006) Gene Designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinformatics 7:285

    PubMed Central  PubMed  Google Scholar 

  14. Chung BK, Lee DY (2012) Computational codon optimization of synthetic gene for protein expression. BMC Syst Biol 6:134

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Burgess-Brown NA, Sharma S, Sobott F et al (2008) Codon optimization can improve expression of human genes in Escherichia coli: a multi-gene study. Protein Expr Purif 59:94–102

    CAS  PubMed  Google Scholar 

  16. Tegel H, Tourle S, Ottosson J et al (2010) Increased levels of recombinant human proteins with the Escherichia coli strain Rosetta(DE3). Protein Expr Purif 69:159–167

    CAS  PubMed  Google Scholar 

  17. Rosano GL, Ceccarelli EA (2009) Rare codon content affects the solubility of recombinant proteins in a codon bias-adjusted Escherichia coli strain. Microb Cell Fact 8:41

    PubMed Central  PubMed  Google Scholar 

  18. Marin M (2008) Folding at the rhythm of the rare codon beat. Biotechnol J 3:1047–1057

    CAS  PubMed  Google Scholar 

  19. Voges D, Watzele M, Nemetz C et al (2004) Analyzing and enhancing mRNA translational efficiency in an Escherichia coli in vitro expression system. Biochem Biophys Res Commun 318:601–614

    CAS  PubMed  Google Scholar 

  20. Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27:946–950

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Salis HM (2011) The ribosome binding site calculator. Methods Enzymol 498:19–42

    CAS  PubMed  Google Scholar 

  22. Makino T, Skretas G, Georgiou G (2011) Strain engineering for improved expression of recombinant proteins in bacteria. Microb Cell Fact 10:32

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Salinas G, Pellizza L, Margenat M et al (2011) Tuned Escherichia coli as a host for the expression of disulfide-rich proteins. Biotechnol J 6:686–699

    CAS  PubMed  Google Scholar 

  24. Ferre F, Clote P (2005) DiANNA: a web server for disulfide connectivity prediction. Nucleic Acids Res 33:W230–W232

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Lin HH, Tseng LY (2010) DBCP: a web server for disulfide bonding connectivity pattern prediction without the prior knowledge of the bonding state of cysteines. Nucleic Acids Res 38:W503–W507

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Berkmen M (2012) Production of disulfide-bonded proteins in Escherichia coli. Protein Expr Purif 82:240–251

    CAS  PubMed  Google Scholar 

  27. Klint JK, Senff S, Saez NJ et al (2013) Production of recombinant disulfide-rich venom peptides for structural and functional analysis via expression in the periplasm of E. coli. PLoS One 8:e63865

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Mergulhao FJ, Summers DK, Monteiro GA (2005) Recombinant protein secretion in Escherichia coli. Biotechnol Adv 23:177–202

    CAS  PubMed  Google Scholar 

  29. den Blaauwen T, Driessen AJ (1996) Sec-dependent preprotein translocation in bacteria. Arch Microbiol 165:1–8

    Google Scholar 

  30. Luirink J, Sinning I (2004) SRP-mediated protein targeting: structure and function revisited. Biochim Biophys Acta 1694:17–35

    CAS  PubMed  Google Scholar 

  31. Natale P, Bruser T, Driessen AJ (2008) Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane—distinct translocases and mechanisms. Biochim Biophys Acta 1778:1735–1756

    CAS  PubMed  Google Scholar 

  32. Wagner S, Klepsch MM, Schlegel S et al (2008) Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci U S A 105:14371–14376

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Schlegel S, Rujas E, Ytterberg AJ et al (2013) Optimizing heterologous protein production in the periplasm of E coli by regulating gene expression levels. Microb Cell Fact 12:24

    CAS  PubMed Central  PubMed  Google Scholar 

  34. de Marco A (2009) Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb Cell Fact 8:26

    PubMed Central  PubMed  Google Scholar 

  35. Bessette PH, Aslund F, Beckwith J et al (1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci U S A 96:13703–13708

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Lobstein J, Emrich CA, Jeans C et al (2012) SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Fact 11:56

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Hatahet F, Nguyen VD, Salo KE et al (2010) Disruption of reducing pathways is not essential for efficient disulfide bond formation in the cytoplasm of E. coli. Microb Cell Fact 9:67

    PubMed Central  PubMed  Google Scholar 

  38. Nguyen VD, Hatahet F, Salo KE et al (2010) Pre-expression of a sulfhydryl oxidase significantly increases the yields of eukaryotic disulfide bond containing proteins expressed in the cytoplasm of E. coli. Microb Cell Fact 10:1

    Google Scholar 

  39. Nozach H, Fruchart-Gaillard C, Fenaille F et al (2013) High throughput screening identifies disulfide isomerase DsbC as a very efficient partner for recombinant expression of small disulfide-rich proteins in E. coli. Microb Cell Fact 12:37

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Walls D, Loughran ST (2011) Tagging recombinant proteins to enhance solubility and aid purification. Methods Mol Biol 681:151–175

    CAS  PubMed  Google Scholar 

  41. Young CL, Britton ZT, Robinson AS (2012) Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol J 7:620–634

    CAS  PubMed  Google Scholar 

  42. Murphy MB, Doyle SA (2005) High-throughput purification of hexahistidine-tagged proteins expressed in E. coli. Methods Mol Biol 310:123–130

    CAS  PubMed  Google Scholar 

  43. Zhu XQ, Li SX, He HJ et al (2005) On-column refolding of an insoluble His6-tagged recombinant EC-SOD overexpressed in Escherichia coli. Acta Biochim Biophys Sin (Shanghai) 37:265–269

    CAS  Google Scholar 

  44. Li M, Su ZG, Janson JC (2004) In vitro protein refolding by chromatographic procedures. Protein Expr Purif 33:1–10

    PubMed  Google Scholar 

  45. Schafer F, Romer U, Emmerlich M et al (2002) Automated high-throughput purification of 6xHis-tagged proteins. J Biomol Tech 13:131–142

    PubMed Central  PubMed  Google Scholar 

  46. Vincentelli R, Canaan S, Offant J et al (2005) Automated expression and solubility screening of His-tagged proteins in 96-well format. Anal Biochem 346:77–84

    CAS  PubMed  Google Scholar 

  47. Steen J, Uhlen M, Hober S et al (2006) High-throughput protein purification using an automated set-up for high-yield affinity chromatography. Protein Expr Purif 46:173–178

    CAS  PubMed  Google Scholar 

  48. Magnusdottir A, Johansson I, Dahlgren LG et al (2009) Enabling IMAC purification of low abundance recombinant proteins from E. coli lysates. Nat Methods 6:477–478

    CAS  PubMed  Google Scholar 

  49. Bolanos-Garcia VM, Davies OR (2006) Structural analysis and classification of native proteins from E. coli commonly co-purified by immobilised metal affinity chromatography. Biochim Biophys Acta 1760:1304–1313

    CAS  PubMed  Google Scholar 

  50. Robichon C, Luo J, Causey TB et al (2011) Engineering Escherichia coli BL21(DE3) derivative strains to minimize E. coli protein contamination after purification by immobilized metal affinity chromatography. Appl Environ Microbiol 77:4634–4646

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Andersen KR, Leksa NC, Schwartz TU (2013) Optimized E. coli expression strain LOBSTR eliminates common contaminants from His-tag purification. Proteins 81:1857–1861

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Schmidt TG, Skerra A (2007) The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc 2:1528–1535

    CAS  PubMed  Google Scholar 

  53. Lichty JJ, Malecki JL, Agnew HD et al (2005) Comparison of affinity tags for protein purification. Protein Expr Purif 41:98–105

    CAS  PubMed  Google Scholar 

  54. Schmidt TG, Batz L, Bonet L et al (2013) Development of the Twin-Strep-tag(R) and its application for purification of recombinant proteins from cell culture supernatants. Protein Expr Purif 92:54–61

    CAS  PubMed  Google Scholar 

  55. Hammarstrom M, Hellgren N, van Den Berg S et al (2002) Rapid screening for improved solubility of small human proteins produced as fusion proteins in Escherichia coli. Protein Sci 11:313–321

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Esposito D, Chatterjee DK (2006) Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotechnol 17:353–358

    CAS  PubMed  Google Scholar 

  57. Pattenden LK, Thomas WG (2008) Amylose affinity chromatography of maltose-binding protein: purification by both native and novel matrix-assisted dialysis refolding methods. Methods Mol Biol 421:169–189

    CAS  PubMed  Google Scholar 

  58. Smith DB, Johnson KS (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40

    CAS  PubMed  Google Scholar 

  59. Dyson MR, Shadbolt SP, Vincent KJ et al (2004) Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression. BMC Biotechnol 4:32

    PubMed Central  PubMed  Google Scholar 

  60. Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8:1668–1674

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Cho HJ, Lee Y, Chang RS et al (2008) Maltose binding protein facilitates high-level expression and functional purification of the chemokines RANTES and SDF-1alpha from Escherichia coli. Protein Expr Purif 60:37–45

    CAS  PubMed  Google Scholar 

  62. LaVallie ER, Lu Z, Diblasio-Smith EA et al (2000) Thioredoxin as a fusion partner for production of soluble recombinant proteins in Escherichia coli. Methods Enzymol 326:322–340

    CAS  PubMed  Google Scholar 

  63. Kim S, Lee SB (2008) Soluble expression of archaeal proteins in Escherichia coli by using fusion-partners. Protein Expr Purif 62:116–119

    CAS  PubMed  Google Scholar 

  64. LaVallie ER, DiBlasio EA, Kovacic S et al (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (N Y) 11:187–193

    CAS  Google Scholar 

  65. Marblestone JG, Edavettal SC, Lim Y et al (2006) Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Sci 15:182–189

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Malakhov MP, Mattern MR, Malakhova OA et al (2004) SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genomics 5:75–86

    CAS  PubMed  Google Scholar 

  67. Butt TR, Edavettal SC, Hall JP et al (2005) SUMO fusion technology for difficult-to-express proteins. Protein Expr Purif 43:1–9

    CAS  PubMed  Google Scholar 

  68. Zhang Z, Li ZH, Wang F et al (2002) Overexpression of DsbC and DsbG markedly improves soluble and functional expression of single-chain Fv antibodies in Escherichia coli. Protein Expr Purif 26:218–228

    CAS  PubMed  Google Scholar 

  69. De Marco V, Stier G, Blandin S et al (2004) The solubility and stability of recombinant proteins are increased by their fusion to NusA. Biochem Biophys Res Commun 322:766–771

    PubMed  Google Scholar 

  70. Nallamsetty S, Waugh DS (2006) Solubility-enhancing proteins MBP and NusA play a passive role in the folding of their fusion partners. Protein Expr Purif 45:175–182

    CAS  PubMed  Google Scholar 

  71. van den Berg S, Lofdahl PA, Hard T et al (2006) Improved solubility of TEV protease by directed evolution. J Biotechnol 121:291–298

    PubMed  Google Scholar 

  72. Kapust RB, Tozser J, Copeland TD et al (2002) The P1′ specificity of tobacco etch virus protease. Biochem Biophys Res Commun 294:949–955

    CAS  PubMed  Google Scholar 

  73. Moon AF, Mueller GA, Zhong X et al (2010) A synergistic approach to protein crystallization: combination of a fixed-arm carrier with surface entropy reduction. Protein Sci 19:901–913

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Suzuki N, Hiraki M, Yamada Y et al (2010) Crystallization of small proteins assisted by green fluorescent protein. Acta Crystallogr D Biol Crystallogr 66:1059–1066

    CAS  PubMed  Google Scholar 

  75. Smyth DR, Mrozkiewicz MK, McGrath WJ et al (2003) Crystal structures of fusion proteins with large-affinity tags. Protein Sci 12:1313–1322

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Corsini L, Hothorn M, Scheffzek K et al (2008) Thioredoxin as a fusion tag for carrier-driven crystallization. Protein Sci 17:2070–2079

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Esposito D, Garvey LA, Chakiath CS (2009) Gateway cloning for protein expression. Methods Mol Biol 498:31–54

    CAS  PubMed  Google Scholar 

  78. Berrow NS, Alderton D, Sainsbury S et al (2007) A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res 35:e45

    PubMed Central  PubMed  Google Scholar 

  79. Unger T, Jacobovitch Y, Dantes A et al (2010) Applications of the Restriction Free (RF) cloning procedure for molecular manipulations and protein expression. J Struct Biol 172:34–44

    CAS  PubMed  Google Scholar 

  80. Correa A, Ortega C, Obal G, Alzari P, Vincentelli R, Oppezzo P (2014) Generation of a vector suite for protein solubility screening. Front Microbiol. 5: 67

    PubMed Central  PubMed  Google Scholar 

  81. Erijman A, Dantes A, Bernheim R et al (2011) Transfer-PCR (TPCR): a highway for DNA cloning and protein engineering. J Struct Biol 175:171–177

    CAS  PubMed  Google Scholar 

  82. Bond SR, Naus CC (2012) RF-Cloning.org: an online tool for the design of restriction-free cloning projects. Nucleic Acids Res 40:W209–W213

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Vera A, Gonzalez-Montalban N, Aris A et al (2007) The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures. Biotechnol Bioeng 96:1101–1106

    CAS  PubMed  Google Scholar 

  84. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234

    CAS  PubMed  Google Scholar 

  85. Blommel PG, Becker KJ, Duvnjak P et al (2007) Enhanced bacterial protein expression during auto-induction obtained by alteration of lac repressor dosage and medium composition. Biotechnol Prog 23:585–598

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Ukkonen K, Mayer S, Vasala A et al (2013) Use of slow glucose feeding as supporting carbon source in lactose autoinduction medium improves the robustness of protein expression at different aeration conditions. Protein Expr Purif 91:147–154

    CAS  PubMed  Google Scholar 

  87. Krause M, Ukkonen K, Haataja T et al (2010) A novel fed-batch based cultivation method provides high cell-density and improves yield of soluble recombinant proteins in shaken cultures. Microb Cell Fact 9:11

    PubMed Central  PubMed  Google Scholar 

  88. Vincentelli R, Romier C (2013) Expression in Escherichia coli: becoming faster and more complex. Curr Opin Struct Biol 23:326–334

    CAS  PubMed  Google Scholar 

  89. Koehn J, Hunt I (2009) High-throughput protein production (HTPP): a review of enabling technologies to expedite protein production. Methods Mol Biol 498:1–18

    CAS  PubMed  Google Scholar 

  90. Ventura S, Villaverde A (2006) Protein quality in bacterial inclusion bodies. Trends Biotechnol 24:179–185

    CAS  PubMed  Google Scholar 

  91. Dechavanne V, Barrillat N, Borlat F et al (2010) A high-throughput protein refolding screen in 96-well format combined with design of experiments to optimize the refolding conditions. Protein Expr Purif 75:192–203

    PubMed  Google Scholar 

  92. Clark EDB (1998) Refolding of recombinant proteins. Curr Opin Biotechnol 9:157–163

    PubMed  Google Scholar 

  93. Achmuller C, Kaar W, Ahrer K et al (2007) N(pro) fusion technology to produce proteins with authentic N termini in E. coli. Nat Methods 4:1037–1043

    PubMed  Google Scholar 

  94. Ke T, Liang S, Huang J et al (2012) A novel PCR-based method for high throughput prokaryotic expression of antimicrobial peptide genes. BMC Biotechnol 12:10

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Tokatlidis K, Dhurjati P, Millet J et al (1991) High activity of inclusion bodies formed in Escherichia coli overproducing Clostridium thermocellum endoglucanase D. FEBS Lett 282:205–208

    CAS  PubMed  Google Scholar 

  96. Garcia-Fruitos E, Gonzalez-Montalban N, Morell M et al (2005) Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb Cell Fact 4:27

    PubMed Central  PubMed  Google Scholar 

  97. de Groot NS, Ventura S (2006) Protein activity in bacterial inclusion bodies correlates with predicted aggregation rates. J Biotechnol 125:110–113

    PubMed  Google Scholar 

  98. Peternel S, Grdadolnik J, Gaberc-Porekar V et al (2008) Engineering inclusion bodies for non denaturing extraction of functional proteins. Microb Cell Fact 7:34

    PubMed Central  PubMed  Google Scholar 

  99. Garcia-Fruitos E (2010) Inclusion bodies: a new concept. Microb Cell Fact 9:80

    PubMed Central  PubMed  Google Scholar 

  100. Garcia-Fruitos E, Vazquez E, Diez-Gil C et al (2012) Bacterial inclusion bodies: making gold from waste. Trends Biotechnol 30:65–70

    CAS  PubMed  Google Scholar 

  101. Villaverde A, Garcia-Fruitos E, Rinas U et al (2012) Packaging protein drugs as bacterial inclusion bodies for therapeutic applications. Microb Cell Fact 11:76

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Low C, Moberg P, Quistgaard EM et al (2013) High-throughput analytical gel filtration screening of integral membrane proteins for structural studies. Biochim Biophys Acta 1830:3497–3508

    PubMed  Google Scholar 

  103. Sala E, de Marco A (2010) Screening optimized protein purification protocols by coupling small-scale expression and mini-size exclusion chromatography. Protein Expr Purif 74:231–235

    CAS  PubMed  Google Scholar 

  104. Hattori M, Hibbs RE, Gouaux E (2012) A fluorescence-detection size-exclusion chromatography-based thermostability assay for membrane protein precrystallization screening. Structure 20:1293–1299

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Kawate T, Gouaux E (2006) Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14:673–681

    CAS  PubMed  Google Scholar 

  106. Backmark AE, Olivier N, Snijder A et al (2013) Fluorescent probe for high-throughput screening of membrane protein expression. Protein Sci 22:1124–1132

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Dale GE, Broger C, Langen H et al (1994) Improving protein solubility through rationally designed amino acid replacements: solubilization of the trimethoprim-resistant type S1 dihydrofolate reductase. Protein Eng 7:933–939

    CAS  PubMed  Google Scholar 

  108. Eijsink VG, Bjork A, Gaseidnes S et al (2004) Rational engineering of enzyme stability. J Biotechnol 113:105–120

    CAS  PubMed  Google Scholar 

  109. Rasila TS, Pajunen MI, Savilahti H (2009) Critical evaluation of random mutagenesis by error-prone polymerase chain reaction protocols, Escherichia coli mutator strain, and hydroxylamine treatment. Anal Biochem 388:71–80

    CAS  PubMed  Google Scholar 

  110. Stemmer WP (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391

    CAS  PubMed  Google Scholar 

  111. Roodveldt C, Aharoni A, Tawfik DS (2005) Directed evolution of proteins for heterologous expression and stability. Curr Opin Struct Biol 15:50–56

    CAS  PubMed  Google Scholar 

  112. Waldo GS, Standish BM, Berendzen J et al (1999) Rapid protein-folding assay using green fluorescent protein. Nat Biotechnol 17:691–695

    CAS  PubMed  Google Scholar 

  113. Pedelacq JD, Piltch E, Liong EC et al (2002) Engineering soluble proteins for structural genomics. Nat Biotechnol 20:927–932

    CAS  PubMed  Google Scholar 

  114. Cabantous S, Terwilliger TC, Waldo GS (2005) Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol 23:102–107

    CAS  PubMed  Google Scholar 

  115. Pedelacq JD, Cabantous S, Tran T et al (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24:79–88

    CAS  PubMed  Google Scholar 

  116. Maxwell KL, Mittermaier AK, Forman-Kay JD et al (1999) A simple in vivo assay for increased protein solubility. Protein Sci 8:1908–1911

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Sieber V, Martinez CA, Arnold FH (2001) Libraries of hybrid proteins from distantly related sequences. Nat Biotechnol 19:456–460

    CAS  PubMed  Google Scholar 

  118. Dahlroth SL, Nordlund P, Cornvik T (2006) Colony filtration blotting for screening soluble expression in Escherichia coli. Nat Protoc 1:253–258

    CAS  PubMed  Google Scholar 

  119. Cornvik T, Dahlroth SL, Magnusdottir A et al (2005) Colony filtration blot: a new screening method for soluble protein expression in Escherichia coli. Nat Methods 2:507–509

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financed by a research grant from FCE-7273 and FMV-7323, 2011 from Agencia Nacional de Investigación e Innovación (ANII), Montevideo, Uruguay to P. Oppezzo. A. Correa was financed by a doctoral fellowship from ANII, Uruguay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Oppezzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Correa, A., Oppezzo, P. (2015). Overcoming the Solubility Problem in E. coli: Available Approaches for Recombinant Protein Production. In: García-Fruitós, E. (eds) Insoluble Proteins. Methods in Molecular Biology, vol 1258. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2205-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2205-5_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2204-8

  • Online ISBN: 978-1-4939-2205-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics