Skip to main content

Recombinant Glycoprotein Production in Human Cell Lines

  • Protocol
  • First Online:
Insoluble Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1258))

Abstract

The most important properties of a protein are determined by its primary structure, its amino acid sequence. However, protein features can be also modified by a large number of posttranslational modifications. These modifications can occur during or after the synthesis process, and glycosylation appears as the most common posttranslational modification. It is estimated that 50 % of human proteins have some kind of glycosylation, which has a key role in maintaining the structure, stability, and function of the protein. Besides, glycostructures can also influence the pharmacokinetics and immunogenicity of the protein. Although the glycosylation process is a conserved mechanism that occurs in yeast, plants, and animals, several studies have demonstrated significant differences in the glycosylation pattern in recombinant proteins expressed in mammalian, yeast, and insect cells. Thus, currently, important efforts are being done to improve the systems for the expression of recombinant glycosylated proteins. Among the different mammalian cell lines used for the production of recombinant proteins, a significant difference in the glycosylation pattern that can alter the production and/or activity of the protein exists. In this context, human cell lines have emerged as a new alternative for the production of human therapeutic proteins, since they are able to produce recombinant proteins with posttranslational modifications similar to its natural counterpart and reduce potential immunogenic reactions against nonhuman epitopes. This chapter describes the steps necessary to produce a recombinant glycoprotein in a human cell line in small scale and also in bioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leavitt R, Schlesinger S, Kornfeld S (1977) Impaired intracellular migration and altered solubility of nonglycosylated glycoproteins of vesicular stomatitis virus and Sindbis virus. J Biol Chem 252:9018–9023

    CAS  PubMed  Google Scholar 

  2. Wallick SC, Kabat EA, Morrison SL (1988) Glycosylation of a VH residue of a monoclonal antibody against alpha (1–6) dextran increases its affinity for antigen. J Exp Med 168:1099–1109

    Article  CAS  PubMed  Google Scholar 

  3. Walsh MT, Watzlawick H, Putnam FW et al (1990) Effect of the carbohydrate moiety on the secondary structure of beta 2-glycoprotein. I. Implications for the biosynthesis and folding of glycoproteins. Biochemistry 29:6250–6257

    Article  CAS  PubMed  Google Scholar 

  4. Croset A, Delafosse L, Gaudry JP et al (2012) Differences in the glycosylation of recombinant proteins expressed in HEK and CHO cells. J Biotechnol 161:336–348

    Article  CAS  PubMed  Google Scholar 

  5. Gemmill TR, Trimble RB (1999) Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim Biophys Acta 1426:227–237

    Article  CAS  PubMed  Google Scholar 

  6. Gomord V, Chamberlain P, Jefferis R et al (2005) Biopharmaceutical production in plants: problems, solutions and opportunities. Trends Biotechnol 23:559–565

    Article  CAS  PubMed  Google Scholar 

  7. Russo-Carbolante EM, Picanco-Castro V, Alves DC et al (2011) Integration pattern of HIV-1 based lentiviral vector carrying recombinant coagulation factor VIII in Sk-Hep and 293T cells. Biotechnol Lett 33:23–31

    Article  CAS  PubMed  Google Scholar 

  8. Schroder AR, Shinn P, Chen H et al (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110:521–529

    Article  CAS  PubMed  Google Scholar 

  9. Ambrosi A, Cattoglio C, Di Serio C (2008) Retroviral integration process in the human genome: is it really non-random? A new statistical approach. PLoS Comput Biol 4:e1000144. doi:10.1371/journal.pcbi.1000144

    Article  PubMed Central  PubMed  Google Scholar 

  10. Wu X, Li Y, Crise B et al (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 2300:1749–1751

    Article  Google Scholar 

  11. Appelt JU, Giordano FA, Ecker M et al (2009) QuickMap: a public tool for large-scale gene therapy vector insertion site mapping and analysis. Gene Ther 16:885–893

    Article  CAS  PubMed  Google Scholar 

  12. Varki A (1998) Factors controlling the glycosylation potential of the Golgi apparatus. Trends Cell Biol 8:34–40

    Article  CAS  PubMed  Google Scholar 

  13. Gross V, Heinrich PC, vom Berg D et al (1988) Involvement of various organs in the initial plasma clearance of differently glycosylated rat liver secretory proteins. Eur J Biochem 173:653–659

    Article  CAS  PubMed  Google Scholar 

  14. Rudd PM, Wormald MR, Wing DR et al (2001) Prion glycoprotein: structure, dynamics, and roles for the sugars. Biochemistry 40:3759–3766

    Article  CAS  PubMed  Google Scholar 

  15. Peter-Katalinic J (2005) Methods in enzymology: O-glycosylation of proteins. Methods Enzymol 405:139–171

    Article  CAS  PubMed  Google Scholar 

  16. Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12:43R–56R

    Article  CAS  PubMed  Google Scholar 

  17. Hua S, Nwosu CC, Strum JS et al (2012) Site-specific protein glycosylation analysis with glycan isomer differentiation. Anal Bioanal Chem 403:1291–1302

    Article  CAS  PubMed  Google Scholar 

  18. Rajagopalan L, Organ-Darling LE, Liu H et al (2010) Glycosylation regulates prestin cellular activity. J Assoc Res Otolaryngol 11:39–51

    Article  PubMed Central  PubMed  Google Scholar 

  19. Gornik O, Lauc G (2008) Glycosylation of serum proteins in inflammatory diseases. Dis Markers 25:267–278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Cooke CL, An HJ, Kim J et al (2009) Modification of gastric mucin oligosaccharide expression in rhesus macaques after infection with Helicobacter pylori. Gastroenterology 137:1061–1071

    Article  CAS  PubMed  Google Scholar 

  21. Dennis JW, Granovsky M, Warren CE (1999) Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta 1473:21–34

    Article  CAS  PubMed  Google Scholar 

  22. Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126:855–867

    Article  CAS  PubMed  Google Scholar 

  23. Ghaderi D, Taylor RE, Padler-Karavani V et al (2010) Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nat Biotechnol 28:863–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Galili U (2004) Immune response, accommodation, and tolerance to transplantation carbohydrate antigens. Transplantation 78:1093–1098

    Article  CAS  PubMed  Google Scholar 

  25. Bardor M, Nguyen DH, Diaz S et al (2005) Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells. J Biol Chem 280:4228–4237

    Article  CAS  PubMed  Google Scholar 

  26. Suttie JW, Preusch PC (1986) Studies of the vitamin K-dependent carboxylase and vitamin K epoxide reductase in rat liver. Haemostasis 16:193–215

    CAS  PubMed  Google Scholar 

  27. Chapple SD, Crofts AM, Shadbolt SP et al (2006) Multiplexed expression and screening for recombinant protein production in mammalian cells. BMC Biotechnol 6:49

    Article  PubMed Central  PubMed  Google Scholar 

  28. Fallaux FJ, Bout A, van der Velde I et al (1998) New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum Gene Ther 9:1909–1917

    Article  CAS  PubMed  Google Scholar 

  29. Jones D, Kroos N, Anema R et al (2003) High-level expression of recombinant IgG in the human cell line per.c6. Biotechnol Prog 19:163–168, PubMed PMID: 12573020

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We would like to thank Sandra Navarro for drawing the figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virgínia Picanço-Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Swiech, K., de Freitas, M.C.C., Covas, D.T., Picanço-Castro, V. (2015). Recombinant Glycoprotein Production in Human Cell Lines. In: García-Fruitós, E. (eds) Insoluble Proteins. Methods in Molecular Biology, vol 1258. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2205-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2205-5_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2204-8

  • Online ISBN: 978-1-4939-2205-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics