Skip to main content

Cell-Free Protein Synthesis and Purification of the Dopamine D2 Receptor

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 96))

Abstract

The dopamine D2 receptor is considered one of the most important neurotransmitter receptors relevant to behavioral and clinical effects of antipsychotic drugs. Its expression and purification however is met with several challenges. This chapter provides a detailed methodology on the cell-free synthesis of the dopamine D2L receptor, using Escherichia coli (E. coli) lysate in a regenerative dialysis membrane system. This cell-free technique utilizes protein synthesis machinery and exogenous dopamine D2L DNA to synthesize functional protein outside of intact cells. The cell-free system offers various advantages specifically for the expression of transmembrane proteins, like G-protein-coupled receptors, which typically present a significant challenge. Transmembrane protein synthesis via more conventional approaches exhibit a number of innate limitations including protein aggregation, misfolding, and low yield due to cellular toxicity. The cell-free protein synthesis systems allow for the continuous replenishment of depleting precursors and removal of toxic buildup through a size-regulated porous dialysis membrane. As such this system facilitates higher yields of G-protein-coupled receptors when compared to conventional cell-based methods. Furthermore, this method provides the capability to modify the protein product, as it can be designed to incorporate radiolabeled isotopes, unnatural amino acids, solubilizing agents, cofactors, and inhibitors as is relevant for more innovative and specific research questions. Finally, an optimized cell-free system can synthesize high levels of this G-protein-coupled receptor within a few hours of incubation, providing an efficient solution to the challenge of characterizing the dopamine D2 receptor.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

AMPA and NMDA:

Ionotropic glutamate receptors

ATP:

Adenosine triphosphate

cAMP:

Cyclic AMP

cDNA:

Complementary DNA

CREB:

cAMP-response element-binding protein

CTP:

Cytidine triphosphate

dNTP:

deoxyribonucleotide triphosphate

D2L :

Dopamine D2 receptor long isoform

D2S :

Dopamine D2 receptor short isoform

DARPP-32:

32kDa dopamine and cAMP-regulated phosphoprotein

DNA:

Deoxyribonucleic acid

E. coli:

Escherichia coli

ECL:

Enhanced chemiluminescence

EDTA:

Ethylenediaminetetraacetic acid

GPCR:

G-protein-coupled receptor

Gαs:

Stimulatory G-protein

GTP:

Guanosine triphosphate

HRP:

Horseradish peroxidase

LB:

Lysogeny broth

MOBIX:

McMaster Institute for Molecular Biology and Biotechnology

Ni–NTA:

Nickel–nitrilotriacetic acid

NPA:

Norpropylapomorphine

PAGE:

Polyacrylamide gel electrophoresis

PBS:

Phosphate buffered saline

PCR:

Polymerase chain reaction

PKA:

Protein kinase A

PVDF:

Polyvinylidene fluoride

RNA:

Ribonucleic acid

SDS:

Sodium dodecyl sulfate

SDS:

Tris-acetate-EDTA buffer

UTP:

Uridine triphosphate

References

  1. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    CAS  PubMed  Google Scholar 

  2. Spano PF, Govoni S, Trabucchi M (1978) Studies on the pharmacological properties of dopamine receptors in various areas of the central nervous system. Adv Biochem Psychopharmacol 19:155–165

    CAS  PubMed  Google Scholar 

  3. Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277:93–96

    Article  CAS  PubMed  Google Scholar 

  4. Garau L, Govoni S, Stefanini E, Trabucchi M, Spano PF (1978) Dopamine receptors: pharmacological and anatomical evidences indicate that two distinct dopamine receptor populations are present in rat striatum. Life Sci 23:1745–1750

    Article  CAS  PubMed  Google Scholar 

  5. Sibley DR, Monsma FJ (1992) Molecular biology of dopamine receptors. Trends Pharmacol Sci 13:61–69

    Article  CAS  PubMed  Google Scholar 

  6. Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217

    Article  CAS  PubMed  Google Scholar 

  7. Levey AI, Hersch SM, Rye DB, Sunahara RK, Niznik HB, Kitt CA, Price DL, Maggio R, Brann MR, Ciliax BJ (1993) Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci U S A 90:8861–8865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Malek D, Munch G, Palm D (1993) Two sites in the third inner loop of the dopamine D2 receptor are involved in functional G protein-mediated coupling to adenylate cyclase. FEBS Lett 325:215–219

    Article  CAS  PubMed  Google Scholar 

  9. Noble EP (2003) D2 dopamine receptor gene in psychiatric and neurologic disorders and its phenotypes. Am J Med Genet B Neuropsychiatr Genet 116B:103–125

    Article  PubMed  Google Scholar 

  10. Pivonello R, Ferone D, Lombardi G, Colao A, Lamberts SW, Hofland LJ (2007) Novel insights in dopamine receptor physiology. Eur J Endocrinol 156(Suppl 1):S13–S21

    Article  CAS  PubMed  Google Scholar 

  11. van Holstein M, Aarts E, van der Schaaf ME, Geurts DE, Verkes RJ, Franke B, van Schouwenburg MR, Cools R (2011) Human cognitive flexibility depends on dopamine D2 receptor signaling. Psychopharmacology (Berl) 218:567–578

    Article  Google Scholar 

  12. Vallone D, Picetti R, Borrelli E (2000) Structure and function of dopamine receptors. Neurosci Biobehav Rev 24:125–132

    Article  CAS  PubMed  Google Scholar 

  13. Seeman P (2001) Antipsychotic drugs, dopamine receptors, and schizophrenia. Clin Neurosci Res 1:53–60

    Article  CAS  Google Scholar 

  14. Seeman P (2006) Targeting the dopamine D2 receptor in schizophrenia. Expert Opin Ther Targets 10:515–531

    Article  CAS  PubMed  Google Scholar 

  15. Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III–the final common pathway. Schizophr Bull 35:549–562

    Article  PubMed Central  PubMed  Google Scholar 

  16. Steeves TD, Ko JH, Kideckel DM, Rusjan P, Houle S, Sandor P, Lang AE, Strafella AP (2010) Extrastriatal dopaminergic dysfunction in tourette syndrome. Ann Neurol 67:170–181

    Article  CAS  PubMed  Google Scholar 

  17. Beyaert MG, Daya RP, Dyck BA, Johnson RL, Mishra RK (2013) PAOPA, a potent dopamine D2 receptor allosteric modulator, prevents and reverses behavioral and biochemical abnormalities in an amphetamine-sensitized preclinical animal model of schizophrenia. Eur Neuropsychopharmacol 23:253–262

    Article  CAS  PubMed  Google Scholar 

  18. Basu D, Tian Y, Bhandari J, Jiang JR, Hui P, Johnson RL, Mishra RK (2013) Effects of the dopamine D2 allosteric modulator, PAOPA, on the expression of GRK2, arrestin-3, ERK1/2, and on receptor internalization. PLoS One 8:e70736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ramwani J, Mishra RK (1986) Purification of bovine striatal dopamine D-2 receptor by affinity chromatography. J Biol Chem 261:8894–8898

    CAS  PubMed  Google Scholar 

  20. Senogles SE, Amlaiky N, Falardeau P, Caron MG (1988) Purification and characterization of the D2-dopamine receptor from bovine anterior pituitary. J Biol Chem 263:18996–19002

    CAS  PubMed  Google Scholar 

  21. Clagett-Dame M, Schoenleber R, Chung C, McKelvy JF (1989) Preparation of an affinity chromatography matrix for the selective purification of the dopamine D2 receptor from bovine striatal membranes. Biochim Biophys Acta 986:271–280

    Article  CAS  PubMed  Google Scholar 

  22. Usui H, Takahashi Y, Maeda N, Mitui H, Isobe T, Okuyama T, Nishizawa Y, Hayashi S (1990) Purification of D2 dopamine receptor by photoaffinity labelling, high-performance liquid chromatography and preparative sodium dodecyl sulphate polyacrylamide gel electrophoresis. J Chromatogr 515:375–384

    Article  CAS  PubMed  Google Scholar 

  23. Chazot PL, Strange PG (1992) Molecular characterization of D2 dopamine-like receptors from brain and from the pituitary gland. Neurochem Int 21:159–169

    Article  CAS  PubMed  Google Scholar 

  24. Strange PG (1993) Dopamine receptors in the basal ganglia: relevance to Parkinson’s disease. Mov Disord 8:263–270

    Article  CAS  PubMed  Google Scholar 

  25. Sarramegna V, Talmont F, Demange P, Milon A (2003) Heterologous expression of G-protein-coupled receptors: comparison of expression systems from the standpoint of large-scale production and purification. Cell Mol Life Sci 60:1529–1546

    Article  CAS  PubMed  Google Scholar 

  26. Grisshammer R (2006) Understanding recombinant expression of membrane proteins. Curr Opin Biotechnol 17:337–340

    Article  CAS  PubMed  Google Scholar 

  27. Wagner S, Bader ML, Drew D, de Gier JW (2006) Rationalizing membrane protein overexpression. Trends Biotechnol 24:364–371

    Article  CAS  PubMed  Google Scholar 

  28. Katzen F, Peterson TC, Kudlicki W (2009) Membrane protein expression: no cells required. Trends Biotechnol 27:455–460

    Article  CAS  PubMed  Google Scholar 

  29. Chong VZ, Young LT, Mishra RK (2002) cDNA array reveals differential gene expression following chronic neuroleptic administration: implications of synapsin II in haloperidol treatment. J Neurochem 82:1533–1539

    Article  CAS  PubMed  Google Scholar 

  30. Bhagwanth S, Mishra S, Daya R, Mah J, Mishra RK, Johnson RL (2012) Transformation of Pro-Leu-Gly-NH(2) peptidomimetic positive allosteric modulators of the dopamine D(2) receptor into negative modulators. ACS Chem Neurosci 3:274–284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The study was funded by the National Institutes of Health, Canadian Institutes of Health Research, and the Ontario Mental Health Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram K. Mishra Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Basu, D., Daya, R., Sookram, C.D.R., Mishra, R.K. (2015). Cell-Free Protein Synthesis and Purification of the Dopamine D2 Receptor. In: Tiberi, M. (eds) Dopamine Receptor Technologies. Neuromethods, vol 96. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2196-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2196-6_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2195-9

  • Online ISBN: 978-1-4939-2196-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics