Advertisement

Low-Temperature Electron Microscopy: Techniques and Protocols

  • Roland A. FleckEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1257)

Abstract

Low-temperature electron microscopy endeavors to provide “solidification of a biological specimen by cooling with the aim of minimal displacement of its components through the use of low temperature as a physical fixation strategy” (Steinbrecht and Zierold, Cryotechniques in biological electron microscopy. Springer-Verlag, Berlin, p 293, 1987). The intention is to maintain confidence that the tissue observed retains the morphology and dimensions of the living material while also ensuring soluble cellular components are not displaced. As applied to both scanning and transmission electron microscopy, cryo-electron microscopy is a strategy whereby the application of low-temperature techniques are used to reduce or remove processing artifacts which are commonly encountered in more conventional room temperature electron microscopy techniques which rely heavily on chemical fixation and heavy metal staining. Often, cryo-electron microscopy allows direct observation of specimens, which have not been stained or chemically fixed.

Key words

Electron microscopy Cryo-electron microscopy SEM TEM 

Notes

Acknowledgments

Kirsty MacLellan-Gibson who has helped organize and run the NIBSC cryoworkshop, the team at CUI, Leanne Glover, Gema Vizcay, Monika Balys, Fiona Winning, and Pippa Hawes (The Pirbright Institute) for her helpful suggestions and comments.

References

  1. 1.
    Glauert AM, Lewis PR (1998) Biological specimen preparation for transmission electron microscopy. Portland Press, London, p 326Google Scholar
  2. 2.
    Boyde A, Maconnachie E (1979) Volume changes during preparation of mouse embryonic tissue for scanning electron microscopy. Scanning 2:149–163CrossRefGoogle Scholar
  3. 3.
    Brenner S, Horne RW (1959) A negative staining method for high-resolution electron microscopy of viruses. Biochim Biophys Acta 34:103–110CrossRefGoogle Scholar
  4. 4.
    Nermut MV, Frank H (1971) Fine structure of Influenza A2 (SINGAPORE) as revealed by negative staining, freeze-drying and freeze-etching. J Gen Virol 10:37–51CrossRefGoogle Scholar
  5. 5.
    Nermut MV (1991) Unorthodox methods of negative staining. Micron Microsc Acta 22:327–339CrossRefGoogle Scholar
  6. 6.
    Baumeister W (1982) Towards higher resolution in biomolecular electron microscopy. Ultramicroscopy 9:151–158CrossRefGoogle Scholar
  7. 7.
    Frank J (1989) Image analysis of single macromolecules. Electron Microsc Rev 2:53–74CrossRefGoogle Scholar
  8. 8.
    Carrascosa JL, Abella G, Marco S, Carazo JM (1990) Three-dimensional reconstruction of the sevenfold form of Bacillus subtilis Gro El chaperonin. J Struct Biol 104:2–8CrossRefGoogle Scholar
  9. 9.
    Gilkey JC, Staehelin LA (1986) Advances in ultra-rapid freezing for the preservation of cellular ultrastructure. J Electron Micr Tech 3:177–210CrossRefGoogle Scholar
  10. 10.
    Robards AW, Sleytr UB (1995) Low temperature methods in biological electron microscopy. In: Glauert AM (ed) Practical methods in electron microscopy, vol 10. Elsevier, Amsterdam, pp 5–146Google Scholar
  11. 11.
    Kellenberger E (1991) The potential of cryofixation and freeze substitution: observations and theoretical considerations. J Microsc 161:183–203CrossRefGoogle Scholar
  12. 12.
    Hayat MA (2000) Chemical fixation. In: Hayat MA (ed) Principles and techniques of electron microscopy: biological applications, 4th edn. Cambridge University Press, Cambridge pp 4–80Google Scholar
  13. 13.
    Claeys M, Vanhecke D, Couvreur M, Tytgat T, Coomans A, Borgonie G (2004) High-pressure freezing and freeze substitution of gravid Caenorhabditis elegans (Nematoda: Rhabditida) for transmission electron microscopy. Nematology 6:319–327CrossRefGoogle Scholar
  14. 14.
    Studer D, Graber W, Al-Amoudi A, Eggli P (2001) A new approach for cryofixation by high-pressure freezing. J Microsc 203:285CrossRefGoogle Scholar
  15. 15.
    Studer D, Humbel BM, Chiquet M (2008) Electron microscopy of high pressure frozen samples: bridging the gap between cellular ultrastructure and atomic resolution. Histochem Cell Biol 130:877–889CrossRefGoogle Scholar
  16. 16.
    Lucic V, Rigort A, Baumeister W (2013) Cryo-electron tomography: the challenge of doing structural biology in situ. J Cell Biol 202:407–419CrossRefGoogle Scholar
  17. 17.
    Kachar B, Parakkal M, Kurc M, Zhao Y, Gillespie PG (2000) High-resolution structure of hair-cell tip links. Proc Natl Acad Sci U S A 97:13336–13341CrossRefGoogle Scholar
  18. 18.
    Branton D (1966) Fracture faces of frozen membranes. Proc Natl Acad Sci U S A 55:1048–1055CrossRefGoogle Scholar
  19. 19.
    Dodge JD (1968) An atlas of biological ultrastructure. Edward Arnold, London, p 80Google Scholar
  20. 20.
    Fleck RA (2001) A guide to freeze fractured/freeze etched Arabidopsis thaliana. Quekett J Microsc 39:163–177Google Scholar
  21. 21.
    Forge A, Davies S, Zajic G (1991) Assessment of ultrastructure in isolated cochlear hair-cells using a procedure for rapid freezing before freeze-fracture and deep-etching. J Neurocytol 20:471–484CrossRefGoogle Scholar
  22. 22.
    Hirokawa N, Tilney LG (1982) Interactions between actin-filaments and between actin-filaments and membranes in quick-frozen and deeply etched hair-cells of the chick ear. J Cell Biol 95:249–261CrossRefGoogle Scholar
  23. 23.
    Stolinski C, Breathnach AS (1975) Freeze fracture replication of biological tissues. Academic, London, p 181Google Scholar
  24. 24.
    Moor H, Riehle U (1968) Snap-freezing under high pressure: a new fixation technique for freeze-etching. Proceedings of the fourth European Regional Conference of Electron Microscopy 2:33–34Google Scholar
  25. 25.
    Müller M, Moor H (1984) Cryofixation of thick specimens by high pressure freezing. In: Revel JP, Barnard T, Haggis GH (eds) Science of biological specimen preparation. SEM Inc, AMF O’Hare, Chicago, pp 131–138Google Scholar
  26. 26.
    Riehle U (1968) Über die Vitrifizierung verdünnter wässriger Lösungen. Federal Institute of Technology (ETH)Google Scholar
  27. 27.
    Studer D, Michel M, Wohlwend M, Hunziker EB, Buschmann MD (1995) Vitrification of articular cartilage by high-pressure freezing. J Microsc 179:321–332CrossRefGoogle Scholar
  28. 28.
    Galway ME, Heckman JW, Hyde GJ, Fowke LC (1995) Chapter 1. Advances in high-pressure and plunge-freeze fixation. In: Galbraith LDW, Bohnert HJ, Bourque DP (eds) Methods in cell biology, vol 49. Elsevier, Philadelphia, PA, USA, pp 3–19Google Scholar
  29. 29.
    Dahl R, Staehelin LA (1989) High-pressure freezing for the preservation of biological structure: theory and practice. J Electron Micr Tech 13:165–174CrossRefGoogle Scholar
  30. 30.
    McDonald KLM, Morphew M, Verkade PM, Muller-Reichert T (2007) Recent advances in high-pressure freezing: equipment and specimen-loading methods. In: Kuo J (ed) Electron microscopy: methods and protocols, 2nd edn. Humana Press, Totowa, NJ, USA, pp 143–173CrossRefGoogle Scholar
  31. 31.
    Steinbrecht RA (1985) Recrystallization and ice-crystal growth in a biological specimen, as shown by a simple freeze substitution method. J Microsc 140:41–46CrossRefGoogle Scholar
  32. 32.
    Studer D, Hennecke H, Müller M (1992) High-pressure freezing of soybean nodules leads to an improved preservation of ultrastructure. Planta 188:155–163CrossRefGoogle Scholar
  33. 33.
    Koster AJ, Klumperman J (2003) Electron microscopy in cell biology: integrating structure and function. Nat Cell Biol:Ss6–Ss10Google Scholar
  34. 34.
    Dubochet J (2007) The physics of rapid cooling and its implications for cryoimmobilization of cells. Methods Cell Biol 79:7–21CrossRefGoogle Scholar
  35. 35.
    Sarraf CE (2000) Immunolabelling for electron microscopy. In: George AJT, Urch CE (eds) Methods in molecular medicine, vol 40, Diagnostic and therapeutic antibodies. Springer, London, UK, pp 439–452Google Scholar
  36. 36.
    Steinbrecht RA, Zierold K (1987) Cryotechniques in biological electron microscopy. Springer, Berlin, p 293CrossRefGoogle Scholar
  37. 37.
    Fernandez-Moran H (1957) Electron microscopy of nervous tissue. In: Richter D (ed) Metabolism of the nervous system. Pergamon Press, Oxford, pp 1–34CrossRefGoogle Scholar
  38. 38.
    van Harreveld A, Crowell J (1964) Electron microscopy after rapid freezing on a metal surface and substitution fixation. Anat Rec 149:381–385CrossRefGoogle Scholar
  39. 39.
    Barlow DI, Sleigh MA (1979) Freeze substitution for preservation of ciliated surfaces for scanning electron microscopy. J Microsc 115:81–95CrossRefGoogle Scholar
  40. 40.
    Nicolas MT, Bassot JM (1993) Freeze substitution after fast freezing fixation in preparation for immunocytochemistry. Microsc Res Tech 24:474–487CrossRefGoogle Scholar
  41. 41.
    Steinbrecht RA, Müller M (1987) Freeze-substitution and freeze-drying. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in biological electron microscopy. Springer-Verlag, Berlin, Heidelberg, pp 149–172CrossRefGoogle Scholar
  42. 42.
    Hohenberg H, Mannweiler K, Müller M (1994) High-pressure freezing of cell suspensions in cellulose capillary tubes. J Microsc 175:34–43CrossRefGoogle Scholar
  43. 43.
    Hohenberg H, Tobler M, Müller M (1996) High-pressure freezing of tissue obtained by fine-needle biopsy. J Microsc 183:133–139CrossRefGoogle Scholar
  44. 44.
    McDonald KL, Webb RI (2011) Freeze substitution in 3 hours or less. J Microsc 243:227–233CrossRefGoogle Scholar
  45. 45.
    Polak JM, Varndell LM (1985) Immunolabelling for electron microscopy. Elsevier, OxfordGoogle Scholar
  46. 46.
    Humbel BM, Schwarz H (1989) Freeze-substitution for immunochemistry. In: Verkleij AJ, Leunissen JLM (eds) Immuno-gold labeling in cell biology. CRC Press, Boca Raton, pp 115–134Google Scholar
  47. 47.
    Studer D, Klein A, Iacovache I, Gnaegi H, Zuber B (2014) A new tool based on two micromanipulators facilitates the handling of ultrathin cryosection ribbons. J Struct Biol 185:125–128CrossRefGoogle Scholar
  48. 48.
    Warely A (1993) Qualitative X-ray microanalysis of thin sections in neology: appraisal and interpretation of results. In: Sigee DC, Morgan AJ, Summer AT, Warley A (eds) X-ray microanalysis in biology, experimental techniques and applications. Cambridge University Press, Cambridge, pp 47–57CrossRefGoogle Scholar
  49. 49.
    Kapp N, Studer D, Gehr P, Geiser M (2007) Electron energy-loss spectroscopy as a tool for elemental analysis in biological specimens. In: Kuo J (ed) Electron microscopy: methods and protocols. Humana Press, Totowa, NJ, USA, pp 431–447CrossRefGoogle Scholar
  50. 50.
    Murphy GE, Jensen GJ (2007) Electron cryotomography. Biotechniques 43(4):413–420CrossRefGoogle Scholar
  51. 51.
    Kaech A, Ziegler U (2014) High-pressure freezing: current state and future prospects. In: Kuo J (ed) Electron microscopy: methods and protocols. Springer, New York, USA, pp 151–171CrossRefGoogle Scholar
  52. 52.
    Sherman DM, Huang CP (2006) High Pressure Freezing (HPF) using the compact HPF 01 unit and evaluation of freeze-substitution methods for cyanobacteria and plant cells. Microsc Microanal 12(Suppl 2):442–443CrossRefGoogle Scholar
  53. 53.
    Fujimoto K (1995) Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins. J Cell Sci 108:3443–3449Google Scholar
  54. 54.
    Karreman MA, van Donselaar EG, Gerritsen HC, Verrips CT, Verkleij AJ (2011) VIS2FIX: a high-speed fixation method for immuno-electron microscopy. Traffic 12:806–814CrossRefGoogle Scholar
  55. 55.
    White DL, Andrews SB, Faller JW, Barrnett RJ (1976) Chemical nature of osmium tetroxide fixation and staining of membranes by X-ray photoelectron-spectroscopy. Biochim Biophys Acta 436:577–592CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Centre for Ultrastructural ImagingKing’s College LondonLondonUK

Personalised recommendations