Laser Scanning Microscopy in Cryobiology

  • Frank Stracke
  • Asger Kreiner-Møller
  • Heiko ZimmermannEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1257)


Laser scanning microscopy is emerging as a powerful imaging tool in cryobiology. The basic microscopy system can be combined with various imaging modalities including Raman spectroscopy, fluorescence correlation spectroscopy, fluorescence lifetime imaging, or multiphoton imaging. Multiphoton imaging can be used to study intracellular ice formation at the subcellular level. A Raman imaging modality can be used for chemical mapping of frozen samples. A Raman spectrum gives information about characteristic molecular vibrations of specific groups in molecules. Raman images can be used to determine the localization of intra- and extracellular constituents and the various forms of water in freeze-concentrated solutions. Spectra can be collected during freezing and thawing of a sample using a temperature-controlled sample holder. In this chapter, various advanced cryoimaging methods are described. Special emphasis is given on the different imaging modalities that can be used to study the various aspects of cryopreservation.

Key words

Cryoimaging Laser scanning microscopy Raman microspectroscopy Fluorescence imaging 


  1. 1.
    Ehrhart F, Schulz JC, Katsen-Globa A et al (2009) A comparative study of freezing single cells and spheroids: towards a new model system for optimizing freezing protocols for cryobanking of human tumours. Cryobiology 58:119–127CrossRefGoogle Scholar
  2. 2.
    Holm F, Strom S, Inzunza J et al (2010) An effective serum- and xeno-free chemically defined freezing procedure for human embryonic and induced pluripotent stem cells. Hum Reprod 25:1271–1279CrossRefGoogle Scholar
  3. 3.
    Reubinoff BE, Pera MF, Vajta G et al (2001) Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum Reprod 16:2187–2194CrossRefGoogle Scholar
  4. 4.
    Donnelly ET, McClure N, Lewis SE (2001) Cryopreservation of human semen and prepared sperm: effects on motility parameters and DNA integrity. Fertil Steril 76:892–900CrossRefGoogle Scholar
  5. 5.
    McGinnity DF, Soars MG, Urbanowicz RA et al (2004) Evaluation of fresh and cryopreserved hepatocytes as in vitro drug metabolism tools for the prediction of metabolic clearance. Drug Metab Dispos 32:1247–1253CrossRefGoogle Scholar
  6. 6.
    Schneider S, Klein HH (2011) Preserved insulin secretion capacity and graft function of cryostored encapsulated rat islets. Regul Pept 166:135–138CrossRefGoogle Scholar
  7. 7.
    Diller KR, Cravalho EG (1971) A cryo-microscope for the study of freezing and thawing processes in biological cells. Cryobiology 7:191–199CrossRefGoogle Scholar
  8. 8.
    Kreiner-Møller A, Stracke F, Zimmermann H (2013) Confocal Raman microscopy as a non-invasive tool to investigate the phase composition of frozen complex cryopreservation media. CryoLetters 34:248–254Google Scholar
  9. 9.
    Cocks FH, Brower EH (1974) Phase diagram relationships in cryobiology. Cryobiology 11:340–358CrossRefGoogle Scholar
  10. 10.
    Bagatolli LA, Gratton E (2000) Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Biophys J 78:290–305CrossRefGoogle Scholar
  11. 11.
    Gläfke C, Akhoondi M, Oldenhof H et al (2012) Cryopreservation of platelets using trehalose: the role of membrane phase behavior during freezing. Biotechnol Prog 28:1347–1354CrossRefGoogle Scholar
  12. 12.
    Somero GN (1995) Proteins and temperature. Annu Rev Physiol 57:43–68CrossRefGoogle Scholar
  13. 13.
    Smeller L (2002) Pressure-temperature phase diagrams of biomolecules. Biochim Biophys Acta 1595:11–29CrossRefGoogle Scholar
  14. 14.
    Hatley RMH, Franks F (1993) Cold destabilisation of enzymes. Faraday Discuss 93:249–257CrossRefGoogle Scholar
  15. 15.
    Stark M, Dörr D, Ehlers A et al (2007) Multiphoton imaging and fluorescence lifetime studies on unstained cells and tissues at cryogenic conditions. Proc SPIE 6628:662809–662834CrossRefGoogle Scholar
  16. 16.
    Ishiguro H, Horimizu T (2008) Three-dimensional microscopic freezing and thawing behavior of biological tissues revealed by real-time imaging using confocal laser scanning microscopy. Int J Heat Mass Trans 51:5642–5649CrossRefGoogle Scholar
  17. 17.
    Dörr D, Stark M, Ehrhart F et al (2009) Multiphoton microscopy for the in-situ observation of cellular processes and integrity in cryopreservation. Biotechnol J 4:1215–1221CrossRefGoogle Scholar
  18. 18.
    Dong J, Malsam J, Bischof JC (2010) Spatial distribution of the state of water in frozen mammalian cells. Biophys J 99:2453–2459CrossRefGoogle Scholar
  19. 19.
    Kreiner-Møller A, Stracke F, Zimmermann H (2014) Hydrohalite spatial distribution in frozen cell cultures measured using confocal Raman microscopy. Cryobiology 69(1):41–47CrossRefGoogle Scholar
  20. 20.
    Raman CV, Krishnan KS (1928) A new type of secondary radiation. Nature 121:501–502CrossRefGoogle Scholar
  21. 21.
    Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic—multiphoton microscopy in the life sciences. Nat Biotechnol 21:1369–1377CrossRefGoogle Scholar
  22. 22.
    Beiser L (2003) Unified optical scanning technology. Wiley, New JerseyCrossRefGoogle Scholar
  23. 23.
    Masters BR (2006) Confocal and multiphoton excitation microscopy. SPIE Press, BellinghamCrossRefGoogle Scholar
  24. 24.
    Dieing T, Hollricher O, Toporski J (eds) (2010) Confocal Raman microscopy. Springer, Berlin, HeidelbergGoogle Scholar
  25. 25.
    Beier AFJ, Schultz JR, Dörr D et al (2011) Effective surface-based cryopreservation of human embryonic stem cells by vitrification. Cryobiology 63:175–185CrossRefGoogle Scholar
  26. 26.
    König K, Uchugonova A, Breunig HG (2014) High-resolution multiphoton cryomicroscopy. Methods 66:230–236CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Frank Stracke
    • 1
  • Asger Kreiner-Møller
    • 1
  • Heiko Zimmermann
    • 1
    Email author
  1. 1.Fraunhofer Institute for Biomedical TechnologySt. IngbertGermany

Personalised recommendations