Advertisement

Modeling and Optimization of Cryopreservation

  • James D. BensonEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1257)

Abstract

Modeling plays a critical role in understanding the biophysical processes behind cryopreservation. It facilitates understanding of the biophysical and some of the biochemical mechanisms of damage during all phases of cryopreservation including CPA equilibration, cooling, and warming. Modeling also provides a tool for optimization of cryopreservation protocols and has yielded a number of successes in this regard. While modern cryobiological modeling includes very detailed descriptions of the physical phenomena that occur during freezing, including ice growth kinetics and spatial gradients that define heat and mass transport models, here we reduce the complexity and approach only a small but classic subset of these problems. Namely, here we describe the process of building and using a mathematical model of a cell in suspension where spatial homogeneity is assumed for all quantities. We define the models that describe the critical cell quantities used to describe optimal and suboptimal protocols and then give an overview of classical methods of how to determine optimal protocols using these models.

Key words

Mass transport Boyle van’t Hoff Chemical potential Freezing point depression Phase diagram Virial equation Optimization 

References

  1. 1.
    Mazur P (1963) Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol 47:347–369CrossRefGoogle Scholar
  2. 2.
    Mazur P, Leibo S, Chu E (1972) A two-factor hypothesis of freezing injury. Evidence from Chinese hamster tissue-culture cells. Exp Cell Res 71:345–355CrossRefGoogle Scholar
  3. 3.
    Woelders H, Chaveiro A (2004) Theoretical prediction of ‘optimal’ freezing programmes. Cryobiology 49:258–271CrossRefGoogle Scholar
  4. 4.
    Liu J, Woods E, Agca Y, Critser E, Critser J (2000) Cryobiology of rat embryos II: a theoretical model for the development of interrupted slow freezing procedures. Biol Reprod 63:1303–1312CrossRefGoogle Scholar
  5. 5.
    Agca Y, Gilmore J, Byers M, Woods EJ, Liu J, Critser JK (2002) Osmotic characteristics of mouse spermatozoa in the presence of extenders and sugars. Biol Reprod 67:1493–1501CrossRefGoogle Scholar
  6. 6.
    Gilmore J, Liu J, Gao D, Critser J (1997) Determination of optimal cryoprotectants and procedures for their addition and removal from human spermatozoa. Hum Reprod 12:112–118CrossRefGoogle Scholar
  7. 7.
    Davidson AF, Benson JD, Higgins AZ (2014) Mathematically optimized cryoprotectant equilibration procedures for cryopreservation of human oocytes. Theor Biol Med Model 11:13CrossRefGoogle Scholar
  8. 8.
    Benson JD, Kearsley AJ, Higgins AZ (2012) Mathematical optimization of procedures for cryoprotectant equilibration using a toxicity cost function. Cryobiology 64:144–151CrossRefGoogle Scholar
  9. 9.
    Benson JD, Chicone CC, Critser JK (2012) Analytical optimal controls for the state constrained addition and removal of cryoprotective agents. Bull Math Biol 74:1516–1530CrossRefGoogle Scholar
  10. 10.
    Levin RL (1982) A generalized method for the minimization of cellular osmotic stresses and strains during the introduction and removal of permeable cryoprotectants. J Biomech Eng 104:81–86CrossRefGoogle Scholar
  11. 11.
    Songsasen N, Leibo SP (1997) Cryopreservation of mouse spermatozoa. II. Relationship between survival after cryopreservation and osmotic tolerance of spermatozoa from three strains of mice. Cryobiology 35:255–269Google Scholar
  12. 12.
    Mullen SF, Li M, Li Y, Chen ZJ, Critser JK (2008) Human oocyte vitrification: the permeability of metaphase II oocytes to water and ethylene glycol and the appliance toward vitrification. Fertil Steril 89:1812–1825CrossRefGoogle Scholar
  13. 13.
    Karlsson JO, Szurek EA, Higgins AZ, Lee SR, Eroglu A (2014) Optimization of cryoprotectant loading into murine and human oocytes. Cryobiology 68:18–28. http://dx.doi.org/10.1016/j.cryobiol.2013.11.002
  14. 14.
    Seki S, Jin B, Mazur P (2014) Extreme rapid warming yields high functional survivals of vitrified 8-cell mouse embryos even when suspended in a half-strength vitrification solution and cooled at moderate rates to 196 C. Cryobiology 68:71–78CrossRefGoogle Scholar
  15. 15.
    Karlsson JOM, Cravalho EG, Rinkes IHMB, Tompkins RG, Yarmush ML, Toner M (1993) Nucleation and growth of ice crystals inside cultured-hepatocytes during freezing in the presence of dimethyl-sulfoxide. Biophys J 65:2524–2536CrossRefGoogle Scholar
  16. 16.
    Yang G, Zhang A, Xu LX, He X (2009) Modeling the cell-type dependence of diffusion-limited intracellular ice nucleation and growth during both vitrification and slow freezing. J Appl Phys 105:114701CrossRefGoogle Scholar
  17. 17.
    Chang A, Dantzig JA, Darr BT, Hubel A (2007) Modeling the interaction of biological cells with a solidifying interface. J Comput Phys 226:1808–1829CrossRefGoogle Scholar
  18. 18.
    Liu Z, Wan R, Muldrew K, Sawchuk S, Rewcastle J (2004) A level set variational formulation for coupled phase change/mass transfer problems: application to freezing of biological systems. Finite Elem Anal Des 40:1641–1663CrossRefGoogle Scholar
  19. 19.
    Zeng C, He L, Peng W, Ding L, Tang K, Fang D, Zhang Y (2014) Selection of optimal reference genes for quantitative RT-PCR studies of boar spermatozoa cryopreservation. Cryobiology 68:113–121. http://dx.doi.org/10.1016/j.cryobiol.2014.01.004
  20. 20.
    Kashuba Benson CM, Benson JD, Critser JK (2008) An improved cryopreservation method for a mouse embryonic stem cell line. Cryobiology 56:120–130CrossRefGoogle Scholar
  21. 21.
    Kashuba CM, Benson JD, Critser JK (2014) Rationally optimized cryopreservation of multiple mouse embryonic stem cell lines: II—mathematical prediction and experimental validation of optimal cryopreservation protocols. Cryobiology 68:176–184. http://dx.doi.org/10.1016/j.cryobiol.2013.12.003
  22. 22.
    Kashuba CM, Benson JD, Critser JK (2014) Rationally optimized cryopreservation of multiple mouse embryonic stem cell lines: I—comparative fundamental cryobiology of multiple mouse embryonic stem cell lines and the implications for embryonic stem cell cryopreservation protocols. Cryobiology 68:166–175. http://dx.doi.org/10.1016/j.cryobiol.2013.12.007
  23. 23.
    Agca Y, Liu J, Critser E, Critser J (2000) Fundamental cryobiology of rat immature and mature oocytes: hydraulic conductivity in the presence of Me(2)SO, Me(2)SO permeability, and their activation energies. J Exp Zool 286:523–533CrossRefGoogle Scholar
  24. 24.
    Lacelle PL, Rothstein A (1966) The passive permeability of the red blood cell to cations. J Gen Physiol 50:171–188CrossRefGoogle Scholar
  25. 25.
    Agca Y, Liu J, Mullen S, Johnson-Ward J, Gould K, Chan A, Critser J (2005) Chimpanzee (pan troglodytes) spermatozoa osmotic tolerance and cryoprotectant permeability characteristics. J Androl 26:470–477CrossRefGoogle Scholar
  26. 26.
    Newton H, Pegg DE, Barrass R, Gosden RG (1999) Osmotically inactive volume, hydraulic conductivity, and permeability to dimethyl sulphoxide of human mature oocytes. J Reprod Fertil 117:27–33CrossRefGoogle Scholar
  27. 27.
    Gao D, Chang Q, Liu C, Farris K, Harvey K, McGann L, English D, Jansen J, Critser J (1998) Fundamental cryobiology of human hematopoietic progenitor cells i: osmotic characteristics and volume distribution. Cryobiology 36:40–48. doi:10.1006/cryo.1997.2060CrossRefGoogle Scholar
  28. 28.
    Woods EJ, Zieger MA, Lakey JR, Liu J, Critser JK (1997) Osmotic characteristics of isolated human and canine pancreatic islets. Cryobiology 35:106–113. doi:10.1006/cryo.1997.2029CrossRefGoogle Scholar
  29. 29.
    Willoughby CE, Mazur P, Peter AT, Critser JK (1996) Osmotic tolerance limits and properties of murine spermatozoa. Biol Reprod 55:715–727CrossRefGoogle Scholar
  30. 30.
    Du J, Tao J, Kleinhans FW, Peter AT, Critser JK (1994) Determination of boar spermatozoa water volume and osmotic response. Theriogenology 42:1183–1191CrossRefGoogle Scholar
  31. 31.
    Du J, Tao J, Kleinhans FW, Mazur P, Critser JK (1994) Water volume and osmotic behaviour of mouse spermatozoa determined by electron paramagnetic resonance. J Reprod Fertil 101:37–42CrossRefGoogle Scholar
  32. 32.
    Benson C, Liu C, Gao D, Critser E, Critser J (1993) Determination of the osmotic characteristics of hamster pancreatic islets and isolated pancreatic islet cells. Cell Transplant 2:461–465Google Scholar
  33. 33.
    Mazur P, Schneider U (1986) Osmotic responses of preimplantation mouse and bovine embryos and their cryobiological implications. Cell Biophys 8:259–285CrossRefGoogle Scholar
  34. 34.
    Shapiro H (1948) The change in osmotically inactive fraction produced by cell activation. J Gen Physiol 32:34–51CrossRefGoogle Scholar
  35. 35.
    Prickett RC, Elliott JAW, Hakda S, McGann LE (2008) A non-ideal replacement for the Boyle van’t Hoff equation. Cryobiology 57:130–136CrossRefGoogle Scholar
  36. 36.
    Katkov II (2011) On proper linearization, construction and analysis of the Boyle–van’t Hoff plots and correct calculation of the osmotically inactive volume. Cryobiology 62:232–241CrossRefGoogle Scholar
  37. 37.
    Katkov II (2008) Challenge from the simple: some caveats in linearization of the Boyle-van’t Hoff and Arrhenius plots. Cryobiology 57:142–149CrossRefGoogle Scholar
  38. 38.
    Benson JD (2012) Some comments on recent discussion of the Boyle van’t Hoff relationship. Cryobiology 64:118–120CrossRefGoogle Scholar
  39. 39.
    Benson JD, Chicone CC, Critser JK (2011) A general model for the dynamics of cell volume, global stability and optimal control. J Math Biol 63:339–359CrossRefGoogle Scholar
  40. 40.
    Moore WJ (1972) Physical chemistry, 4th edn. Prentice-Hall, New JerseyGoogle Scholar
  41. 41.
    Prickett RC, Elliott JAW, McGann LE (2011) Application of the multisolute osmotic virial equation to solutions containing electrolytes. J Phys Chem B 115:14531–14543CrossRefGoogle Scholar
  42. 42.
    Elliott JAW, Prickett R, Elmoazzen H, Porter K, McGann L (2007) A multisolute osmotic virial equation for solutions of interest in biology. J Phys Chem B 111:1775–1785CrossRefGoogle Scholar
  43. 43.
    Landau L, Lifshitz E (1980) Statistical physics. Course of theoretical physics, vol 5, 3rd edn. Pergamon Press, OxfordGoogle Scholar
  44. 44.
    Kleinhans F, Mazur P (2007) Comparison of actual vs. synthesized ternary phase diagrams for solutes of cryobiological interest. Cryobiology 54:212–222CrossRefGoogle Scholar
  45. 45.
    Benson JD (2011) Stability analysis of several non-dilute multiple solute transport equations. J Math Chem 49:859–869CrossRefGoogle Scholar
  46. 46.
    Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena, 2nd edn. Wiley, New YorkGoogle Scholar
  47. 47.
    Elliott J, Elmoazzen H, McGann L (2000) A method whereby Onsager coefficients may be evaluated. J Chem Phys 113:6573–6578CrossRefGoogle Scholar
  48. 48.
    Kedem O, Katchalsky A (1958) Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta 27:229–246CrossRefGoogle Scholar
  49. 49.
    Kleinhans F (1998) Membrane permeability modeling: Kedem-Katchalsky vs a two-parameter formalism. Cryobiology 37:271–289CrossRefGoogle Scholar
  50. 50.
    Finkelstein A (1987) Water movement through lipid bilayers, pores, and plasma membranes: theory and reality. Wiley, New YorkGoogle Scholar
  51. 51.
    Ebertz S, McGann L (2002) Osmotic parameters of cells from a bioengineered human corneal equivalent and consequences for cryopreservation. Cryobiology 45:109–117CrossRefGoogle Scholar
  52. 52.
    Mazur P, Koshimoto C (2002) Is intracellular ice formation the cause of death of mouse sperm frozen at high cooling rates? Biol Reprod 66:1485–1490CrossRefGoogle Scholar
  53. 53.
    Fedorow C, McGann L, Korbutt G, Rayat G, Rajotte R, Lakey J (2001) Osmotic and cryoprotectant permeation characteristics of islet cells isolated from the newborn pig pancreas. Cell Transplant 10:651–659Google Scholar
  54. 54.
    Benson CT, Liu C, Gao D, Critser E, Benson JD, Critser JK (1998) Hydraulic conductivity (Lp) and its activation energy (Ea), cryoprotectant agent permeability (Ps) and its Ea, and reflection coefficients (sigma) for golden hamster individual pancreatic islet cell membranes. Cryobiology 37:290–299CrossRefGoogle Scholar
  55. 55.
    Benson C, Liu C, Gao D, Critser E, Benson J, Critser J (1998) Hydraulic conductivity (Lp) and its activation energy (Ea), cryoprotectant agent permeability (Ps) and its Ea, and reflection coefficients (sigma) for golden hamster individual pancreatic islet cell membranes. Cryobiology 37:290–299. doi:10.1006/cryo.1998.2124CrossRefGoogle Scholar
  56. 56.
    Liu J, Zieger M, Lakey J, Woods E, Critser J (1997) The determination of membrane permeability coefficients of canine pancreatic islet cells and their application to islet cryopreservation. Cryobiology 35:1–13CrossRefGoogle Scholar
  57. 57.
    Benson CT, Liu C, Gao DY, Critser ES, Benson JD, Critser JK (1996) Water permeability (Lp) and its activation energy (Ea), cryoprotectant permeability (Ps) and its Ea, and reflection coefficients (sigma) for golden hamster individual pancreatic islet cell membranes. Cryobiology 33:290--299Google Scholar
  58. 58.
    Liu C, Benson C, Gao D, Haag B, Mcgann L, Critser J (1995) Water permeability and its activation-energy for individual hamster pancreatic-islet cells. Cryobiology 32:493–502. doi:10.1006/cryo.1995.1049CrossRefGoogle Scholar
  59. 59.
    Rule GS, Law P, Kruuv J, Lepock JR (1980) Water permeability of mammalian cells as a function of temperature in the presence of dimethylsulfoxide: correlation with the state of the membrane lipids. J Cell Physiol 103:407–416CrossRefGoogle Scholar
  60. 60.
    Devireddy R, Fahrig B, Godke R, Leibo S (2004) Subzero water transport characteristics of boar spermatozoa confirm observed optimal cooling rates. Mol Reprod Dev 67:446–457CrossRefGoogle Scholar
  61. 61.
    Devireddy R, Smith D, Bischof J (1999) Mass transfer during freezing in rat prostate tumor tissue. (AIChE Journal) 45:639–654Google Scholar
  62. 62.
    Devireddy R, Raha D, Bischof J (1998) Measurement of water transport during freezing in cell suspensions using a differential scanning calorimeter. Cryobiology 36:124–155CrossRefGoogle Scholar
  63. 63.
    Drobnis E, Crowe L, Berger T, Anchordoguy T, Overstreet J, Crowe J (1993) Cold shock damage is due to lipid phase transitions in cell membranes: a demonstration using sperm as a model. J Exp Zool 265:432–437CrossRefGoogle Scholar
  64. 64.
    Mcnaught AD, Wilkinson A (1997) IUPAC. Compendium of chemical terminology (the “Gold Book”), 2nd edn. Wiley Blackwell, Oxford. ISBN 978-0865426849Google Scholar
  65. 65.
    Katkov I (2000) A two-parameter model of cell membrane permeability for multisolute systems. Cryobiology 40:64–83CrossRefGoogle Scholar
  66. 66.
    Lusianti RE, Benson JD, Acker JP, Higgins AZ (2013) Rapid removal of glycerol from frozen-thawed red blood cells. Biotechnol Prog 69:609–620CrossRefGoogle Scholar
  67. 67.
    Kreyszig E (2006) Advanced engineering mathematics, 9th edn. Wiley, New YorkGoogle Scholar
  68. 68.
    Benson JD, Chicone CC, Critser JK (2005) Exact solutions of a two parameter flux model and cryobiological applications. Cryobiology 50:308–316CrossRefGoogle Scholar
  69. 69.
    Boyce W, DiPrima R (1992) Elementary differential equations and boundary value problems, 6th edn. Wiley, New YorkGoogle Scholar
  70. 70.
    Katkov I (2002) The point of maximum cell water volume excursion in case of presence of an impermeable solute. Cryobiology 44:193–203CrossRefGoogle Scholar
  71. 71.
    Zhang S, Chen G (2002) Analytical solution for the extremums of cell water volume and cell volume using a two-parameter model. Cryobiology 44:204–209CrossRefGoogle Scholar
  72. 72.
    Elmoazzen HY, Elliott JAW, McGann LE (2009) Osmotic transport across cell membranes in nondilute solutions: a new nondilute solute transport equation. Biophys J 96:2559–2571CrossRefGoogle Scholar
  73. 73.
    Toner M, Cravalho EG, Karel M (1993) Cellular-response of mouse oocytes to freezing stress - prediction of intracellular ice formation. J Biomech Eng 115:169–174CrossRefGoogle Scholar
  74. 74.
    Karlsson J, Cravalho E, Toner M (1994) A model of diffusion-limited ice growth inside biological cells during freezing. J Appl Phys 75:4442–4455Google Scholar
  75. 75.
    Karlsson JOM (2010) Effects of solution composition on the theoretical prediction of ice nucleation kinetics and thermodynamics. Cryobiology 60:43–51CrossRefGoogle Scholar
  76. 76.
    Glazar AI, Mullen SF, Liu J, Benson JD, Critser JK, Squires EL, Graham JK (2009) Osmotic tolerance limits and membrane permeability characteristics of stallion spermatozoa treated with cholesterol. Cryobiology 59:201–206CrossRefGoogle Scholar
  77. 77.
    Yoshimori T, Takamatsu H (2009) 3-D measurement of osmotic dehydration of isolated and adhered PC-3 cells. Cryobiology 58:52–61. http://dx.doi.org/10.1016/j.cryobiol.2008.10.128
  78. 78.
    Blanco JM, Long JA, Gee G, Donoghue AM, Wildt DE (2008) Osmotic tolerance of avian spermatozoa: influence of time, temperature, cryoprotectant and membrane ion pump function on sperm viability. Cryobiology 56:8–14CrossRefGoogle Scholar
  79. 79.
    Salinas-Flores L, Adams SL, Lim MH (2008) Determination of the membrane permeability characteristics of pacific oyster, crassostrea gigas, oocytes and development of optimized methods to add and remove ethylene glycol. Cryobiology 56:43–52CrossRefGoogle Scholar
  80. 80.
    Si W, Benson J, Men H, Critser J (2006) Osmotic tolerance limits and effects of cryoprotectants on the motility, plasma membrane integrity and acrosomal integrity of rat sperm. Cryobiology 53:336–348CrossRefGoogle Scholar
  81. 81.
    Agca Y, Mullen S, Liu J, Johnson-Ward J, Gould K, Chan A, Critser J (2005) Osmotic tolerance and membrane permeability characteristics of rhesus monkey (macaca mulatta) spermatozoa. Cryobiology 50:1–14CrossRefGoogle Scholar
  82. 82.
    Walters EM, Men H, Agca Y, Mullen SF, Critser ES, Critser JK (2005) Osmotic tolerance of mouse spermatozoa from various genetic backgrounds: acrosome integrity, membrane integrity, and maintenance of motility. Cryobiology 50:193–205CrossRefGoogle Scholar
  83. 83.
    Hunt C, Armitage S, Pegg D (2003) Cryopreservation of umbilical cord blood: 2. Tolerance of CD34(+) cells to multimolar dimethyl sulphoxide and the effect of cooling rate on recovery after freezing and thawing. Cryobiology 46:76–87CrossRefGoogle Scholar
  84. 84.
    Guthrie H, Liu J, Critser J (2002) Osmotic tolerance limits and effects of cryoprotectants on motility of bovine spermatozoa. Biol Reprod 67:1811–1816CrossRefGoogle Scholar
  85. 85.
    Koshimoto C, Mazur P (2002) The effect of the osmolality of sugar-containing media, the type of sugar, and the mass and molar concentration of sugar on the survival of frozen-thawed mouse sperm. Cryobiology 45:80–90CrossRefGoogle Scholar
  86. 86.
    Liu J, Christian J, Critser J (2002) Canine RBC osmotic tolerance and membrane permeability. Cryobiology 44:258–268CrossRefGoogle Scholar
  87. 87.
    Koshimoto C, Gamliel E, Mazur P (2000) Effect of osmolality and oxygen tension on the survival of mouse sperm frozen to various temperatures in various concentrations of glycerol and raffinose. Cryobiology 41:204–231CrossRefGoogle Scholar
  88. 88.
    Gao DY, Liu J, Liu C, McGann LE, Watson PF, Kleinhans FW, Mazur P, Critser ES, Critser JK (1995) Prevention of osmotic injury to human spermatozoa during addition and removal of glycerol. Hum Reprod 10:1109–1122Google Scholar
  89. 89.
    Gao DY, Ashworth E, Watson PF, Kleinhans FW, Mazur P, Critser JK (1993) Hyperosmotic tolerance of human spermatozoa: separate effects of glycerol, sodium chloride, and sucrose on spermolysis. Biol Reprod 49:112–123CrossRefGoogle Scholar
  90. 90.
    Fahy G, Wowk B, Wu J, Paynter S (2004) Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 48:22–35CrossRefGoogle Scholar
  91. 91.
    Elmoazzen HY, Poovadan A, Law GK, Elliott JAW, McGann LE, Jomha NM (2007) Dimethyl sulfoxide toxicity kinetics in intact articular cartilage. Cell Tissue Bank 8:125–133CrossRefGoogle Scholar
  92. 92.
    Wang L, Liu J, Zhou GB, Hou YP, Li JJ, Zhu SE (2011) Quantitative investigations on the effects of exposure durations to the combined cryoprotective agents on mouse oocyte vitrification procedures. Biol Reprod 85:884–894CrossRefGoogle Scholar
  93. 93.
    Benson JD (2009) Mathematical problems from cryobiology. Ph.D. thesis, University of MissouriGoogle Scholar
  94. 94.
    Karlsson JO, Younis AI, Chan AW, Gould KG, Eroglu A (2009) Permeability of the rhesus monkey oocyte membrane to water and common cryoprotectants. Mol Reprod Dev 76:321–333CrossRefGoogle Scholar
  95. 95.
    Lee E, Markus L (1968) Foundations of optimal control theory. The SIAM series in applied mathematics. Wiley, New YorkGoogle Scholar
  96. 96.
    Royden HL (1988) Real analysis, 3rd edn. Prentice-Hall, New JerseyGoogle Scholar
  97. 97.
    Schättler H, Ledzewicz U (2012) Geometric optimal control: theory, methods and examples. Springer, New YorkCrossRefGoogle Scholar
  98. 98.
    Benson JD (2013) Cost functional dependence of optimal CPA equilibration trajectories. Cryobiology 67:404CrossRefGoogle Scholar
  99. 99.
    Mazur P (1977) The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology 14:251–272CrossRefGoogle Scholar
  100. 100.
    Morris G, Acton E, Avery S (1999) A novel approach to sperm cryopreservation. Hum Reprod 14:1013–1021CrossRefGoogle Scholar
  101. 101.
    Karlsson JO, Eroglu A, Toth TL, Cravalho EG, Toner M (1996) Fertilization and development of mouse oocytes cryopreserved using a theoretically optimized protocol. Hum Reprod 11:1296–1305CrossRefGoogle Scholar
  102. 102.
    Wowk B (2010) Thermodynamic aspects of vitrification. Cryobiology 60:11–22CrossRefGoogle Scholar
  103. 103.
    Seki S, Mazur P (2009) The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure. Cryobiology 59:75–82CrossRefGoogle Scholar
  104. 104.
    Barry P, Diamond J (1984) Eflects of unstirred layers on membrane phenomena. Physiol Rev 64:110Google Scholar
  105. 105.
    Prickett RC (2010) The application of the multisolute osmotic virial equation to cryobiology. Ph.D. thesis, University of Alberta, Edmonton, ABGoogle Scholar
  106. 106.
    Benson JD, Bagchi A, Han X, Critser JK, Woods EJ (2010) Melting point equations for the ternary system water/sodium chloride/ethylene glycol revisited. Cryobiology 61:352–356CrossRefGoogle Scholar
  107. 107.
    Prickett RC, Elliott JAW, McGann LE (2010) Application of the osmotic virial equation in cryobiology. Cryobiology 60:30–42CrossRefGoogle Scholar
  108. 108.
    Muldrew K, Acker JP, Elliott JA, McGann LE (2004) The water to ice transition: Implications for living cells. In: Fuller BJ, Lane N, Benson EE (eds) Life in the frozen state. CRC Press, LondonGoogle Scholar
  109. 109.
    Mazur P, Miller R (1976) Permeability of the human erythrocyte to glycerol in 1 and 2 M solutions at 0 or 20 degrees C. Cryobiology 13:507–522CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Mathematical SciencesNorthern Illinois UniversityDeKalbUSA

Personalised recommendations