Freeze-Drying of Decellularized Heart Valve Tissues

  • Willem F. WolkersEmail author
  • Andres Hilfiker
Part of the Methods in Molecular Biology book series (MIMB, volume 1257)


Decellularized xeno-antigen-depleted porcine pulmonary heart valves tissues may be used as matrix implants for patients with malfunctioning heart valves. Decellularized tissues are biological scaffolds composed of extracellular matrix components. Biological scaffolds closely resemble properties of native tissue, but lack immunogenic factors of cellular components. Decellularized heart valve scaffolds need to be stored to be readily available whenever needed. Scaffolds can be stored at reduced supra-zero temperatures, cryopreserved or freeze-dried. The advantage of freeze-drying is that it allows long-term storage at room temperature. This chapter outlines the entire process from decellularization to freeze-drying to obtain dry decellularized porcine heart valve scaffolds.

Key words

Freeze-drying Sucrose Pulmonary heart valve conduits, Matrix implants, Anhydrobiosis 



This work is supported by funding from the CORTISS Foundation and the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) for the Cluster of Excellence “From Regenerative Biology to Reconstructive Therapy” (REBIRTH).


  1. 1.
    Lichtenberg A, Tudorache I, Cebotari S, Ringes-Lichtenberg S, Sturz G, Hoeffler K, Hurscheler C, Brandes G, Hilfiker A, Haverich A (2006) In vitro re-endothelialization of detergent decellularized heart valves under simulated physiological dynamic conditions. Biomaterials 27:4221–4229CrossRefGoogle Scholar
  2. 2.
    Cebotari S, Lichtenberg A, Tudorache I, Hilfiker A, Mertsching H, Leyh R, Breymann T, Kallenbach K, Maniuc L, Batrinac A, Repin O, Maliga O, Ciubotaru A, Haverich A (2006) Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation 114:I132–I137CrossRefGoogle Scholar
  3. 3.
    Cebotari S, Tudorache I, Ciubotaru A, Boethig D, Sarikouch S, Goerler A, Lichtenberg A, Cheptanaru E, Barnaciuc S, Cazacu A, Maliga O, Repin O, Maniuc L, Breymann T, Haverich A (2011) Use of fresh decellularized allografts for pulmonary valve replacement may reduce the reoperation rate in children and young adults: early report. Circulation 124:S115–S123CrossRefGoogle Scholar
  4. 4.
    Kunzelman KS, Cochran RP, Murphree SS, Ring WS, Verrier ED, Eberhart RC (1993) Differential collagen distribution in the mitral valve and its influence on biomechanical behavior. J Heart Valve Dis 2:236–244Google Scholar
  5. 5.
    Aidulis D, Pegg DE, Hunt CJ, Goffin YA, Vanderkelen A, van Hoeck B, Santiago T, Ramos T, Gruys E, Voorhout W (2002) Processing of ovine cardiac valve allografts: 1. Effects of preservation method on structure and mechanical properties. Cell Tissue Bank 3:79–89CrossRefGoogle Scholar
  6. 6.
    Drury FJ, Olsen EGJ, Ross DN (1982) Morphological assessment of sucrose preservation for porcine heart valves. Thorax 37:466–471CrossRefGoogle Scholar
  7. 7.
    Brockbank KGM, Schenke-Layland K, Greene ED, Chen Z, Fritze O, Schleicher M, Kaulitz R, Riemann I, Fend F, Albes JM, Stock UA, Lisy M (2012) Ice-free cryopreservation of heart valve allografts: better extracellular matrix preservation in vivo and preclinical results. Cell Tissue Bank 13:663–671CrossRefGoogle Scholar
  8. 8.
    Wang S, Goecke T, Meixner C, Haverich A, Hilfiker A, Wolkers WF (2012) Freeze-dried heart valve scaffolds. Tissue Eng 18:517–525CrossRefGoogle Scholar
  9. 9.
    Crowe JH, Crowe LM, Carpenter JF, Prestrelski S, Hoekstra FA, de Araujo P, Panek AD (1997) Anhydrobiosis: cellular adaptation to extreme dehydration. In: Dantzler WH (ed) Comparative physiology, handbook of physiology, vol II. Oxford University Press, Oxford, UK, pp 1445–1477Google Scholar
  10. 10.
    Crowe JH, Carpenter JF, Crowe LM (1989) The role of vitrification in anhydrobiosis. Annu Rev Physiol 60:73–103CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Multiphase ProcessesLeibniz Universität HannoverHannoverGermany
  2. 2.Leibniz Research Laboratories for Biotechnology and Artificial OrgansHannover Medical SchoolHannoverGermany

Personalised recommendations