Writing Standard Operating Procedures (SOPs) for Cryostorage Protocols: Using Shoot Meristem Cryopreservation as an Example

  • Keith Harding
  • Erica E. BensonEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1257)


Standard operating procedures are a systematic way of making sure that biopreservation processes, tasks, protocols, and operations are correctly and consistently performed. They are the basic documents of biorepository quality management systems and are used in quality assurance, control, and improvement. Methodologies for constructing workflows and writing standard operating procedures and work instructions are described using a plant cryopreservation protocol as an example. This chapter is pertinent to other biopreservation sectors because how methods are written, interpreted, and implemented can affect the quality of storage outcomes.

Key words

Cryopreservation Encapsulation/dehydration Plant germplasm Quality management systems Standard operating procedures 



The authors gratefully acknowledge Dr Jason Johnston and the helpful advice and guidance of colleagues at the Integrated Biobank of Luxembourg.


  1. 1.
    Stacey GN, Day JG (2007) Long-term ex situ conservation of biological resources and the role of biological resource centers. In: Day JG, Stacey G (eds) Methods in molecular biology, vol 368, 2nd edn, Cryopreservation and freeze drying protocols. Humana Press, Totowa, NJ, pp 1–14Google Scholar
  2. 2.
    Barnes R, Albert M, Damaraju S et al (2013) Generating a comprehensive set of standard operating procedures for a biorepository network-the CTRNet experience. Biopreserv Biobank 11:337–396CrossRefGoogle Scholar
  3. 3.
    Benson EE (2008) Cryopreservation of phytodiversity: a critical appraisal of theory and practice. Crit Rev Plant Sci 27:141–219CrossRefGoogle Scholar
  4. 4.
    Benson EE, Harding K, Debouck D et al (2011) Refinement and standardization of storage procedures for clonal crops - global public goods phase 2: part III. Multi-crop guidelines for developing in vitro conservation best practices for clonal crops. System-wide genetic resources programme, Rome, ItalyGoogle Scholar
  5. 5.
    Benson EE, Betsou F, Fuller BJ et al (2013) Translating cryobiology principles into trans-disciplinary storage guidelines for biorepositories and biobanks: a concept paper. Cryo Letters 34:277–312Google Scholar
  6. 6.
    Harding K, Benson EE, Nunes EC et al (2013) Can biospecimen science expedite the ex situ conservation of plants in megadiverse countries? A focus on the flora of Brazil. Crit Rev Plant Sci 34:277–312Google Scholar
  7. 7.
    OECD (2007) Best practice guidelines for biological resource centres. OECD, Paris, FranceGoogle Scholar
  8. 8.
    OECD (2009) Guidelines on human biobanks and genetic research databases. OECD, Paris, FranceGoogle Scholar
  9. 9.
    ISBER (2012) Best practices for repositories 3rd edition. Biopreserv Biobank 10:76–161CrossRefGoogle Scholar
  10. 10.
    Perskvist N, Björklund C, Dillner J (2014) A complex intervention for workflow enhancement at the Swedish cervical cytology biobank. Biopreserv Biobank 12:69–73CrossRefGoogle Scholar
  11. 11.
    Smith D, Ryan M (2012) Implementing best practice and validation of cryopreservation techniques for microorganisms. ScientificWorldJournal 2012:805659. doi: 10.1100/2012/805659 CrossRefGoogle Scholar
  12. 12.
    Benson EE, Harding K (2012) Cryopreservation of shoots and meristems: an overview of contemporary methodologies. In: Loyola-Vargas VM, Ocho-Alejo N (eds) Plant cell culture protocols, 3rd edn. Humana Press, New York, pp 191–226CrossRefGoogle Scholar
  13. 13.
    Fabre J, Dereuddre J (1990) Encapsulation-dehydration a new approach to cryopreservation of Solanum shoot-tips. Cryo Letters 11:413–426Google Scholar
  14. 14.
    Reed BM, Dumet DJ, Denoma JM et al (2001) Validation of cryopreservation protocols for plant germplasm conservation: a pilot study using Ribes L. Biodiv Conserv 10:939–949CrossRefGoogle Scholar
  15. 15.
    Reed BM, Kovalchuk I, Kushnarenko S et al (2005) Evaluation of critical points in technology transfer of cryopreservation protocols to international plant conservation laboratories. Cryo Letters 25:341–352Google Scholar
  16. 16.
    Gonzalez-Arnao MT, Engelmann F (2006) Cryopreservation of plant germplasm using the encapsulation-dehydration technique: review and case study on sugarcane. Cryo Letters 27:155–168Google Scholar
  17. 17.
    Harding K, Friedl T, Timmermann H et al (2008) Deployment of the encapsulation/dehydration protocol to cryopreserve microalgae held at Sammlung Von Algenkulturen, Universität Göttingen, Germany. Cryo Letters 29:15–20Google Scholar
  18. 18.
    Harding K, Müller J, Day JG et al (2010) Encapsulation-dehydration and colligative cryoprotective strategies and the use of amplified fragment length polymorphism (AFLP) markers to verify the identity and genetic stability of cryopreserved Euglena gracilis. Cryo Letters 31:460–472Google Scholar
  19. 19.
    Jenderek MM, Holman GE, DeNoma J et al (2013) Medium- and long-term storage of the Pycnanthemum (mountain mint) germplasm collection. Cryo Letters 34:490–496Google Scholar
  20. 20.
    Malpique R, Osorio LM, Ferreira DS et al (2010) Alginate encapsulation as a novel strategy for the cryopreservation of neurospheres. Tiss Eng Part C Methods 16:965–977CrossRefGoogle Scholar
  21. 21.
    Massie I, Selden C, Morris J (2011) Cryopreservation of encapsulated liver spheroids using a cryogen-free cooler: high functional recovery using a multi-step cooling profile. Cryo Letters 32:158–165Google Scholar
  22. 22.
    Reed BM (2008) Plant cryopreservation: a practical guide. Springer, New YorkCrossRefGoogle Scholar
  23. 23.
    Benson EE (1995) Cryopreservation of shoot-tips and meristems. In: Day JG, Stacey G (eds) Methods in molecular biology, vol 38, 1st edn, Cryopreservation and freeze drying protocols. Humana Press, Totowa, NJ, pp 121–132Google Scholar
  24. 24.
    Benson EE, Harding K, Johnston J (2007) Cryopreservation of shoot-tips and meristems. In: Day JG, Stacey G (eds) Methods in molecular biology, vol 368, 2nd edn, Cryopreservation and freeze drying protocols. Humana Press, Totowa, NJ, pp 163–184Google Scholar
  25. 25.
    Day JG, Lorenz M, Wilding TA et al (2007) The use of physical and virtual infrastructures for the validation of algal cryopreservation methods in international culture collections. Cryo Letters 28:359–376Google Scholar
  26. 26.
    Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. Cryo Letters 25:3–22Google Scholar
  27. 27.
    Harding K, Johnston JW, Benson EE (2009) Exploring the physiological basis of cryopreservation success and failure in clonally propagated in vitro crop plant germplasm. Agr Food Sci 18:3–16CrossRefGoogle Scholar
  28. 28.
    Benson EE, Reed BM, Brennan R et al (1996) Use of thermal analysis in the evaluation of cryopreservation protocols for Ribes nigrum L. germplasm. Cryo Letters 17:347–362Google Scholar
  29. 29.
    Dumet DJ, Block W, Worland R et al (2000) Profiling cryopreservation protocols for Ribes ciliatum using differential scanning calorimetry. Cryo Letters 21:367–378Google Scholar
  30. 30.
    Benson EE, Johnston J, Muthusamy J et al (2005) Physical and engineering perspectives of in vitro plant cryopreservation. In: Dutta Gupta S, Ibaraki Y (eds) Plant tissue culture engineering. Springer, Netherlands, pp 441–473Google Scholar
  31. 31.
    Johnston JW, Harding K, Benson EE (2007) Antioxidant status and genotypic tolerance of Ribes in vitro cultures to cryopreservation. Plant Sci 172:524–534CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Damar Research Scientists, DamarFifeUK

Personalised recommendations