Advertisement

Efficient Cryopreservation of Human Pluripotent Stem Cells by Surface-Based Vitrification

  • Julia C. Neubauer
  • Axel F. Beier
  • Niels Geijsen
  • Heiko ZimmermannEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1257)

Abstract

Efficient cryopreservation of human stem cells is crucial for guaranteeing a permanent supply of high-quality cell material for drug discovery or regenerative medicine. Conventionally used protocols usually employing slow freezing rates, however, result in low recovery rates for human pluripotent stem cells due to their complex colony structure. In this chapter, a surface-based vitrification protocol for pluripotent stem cells is presented based on a procedure for human embryonic stem cells developed by Beier et al. (Cryobiology 63:175–185, 2011). This simple and highly efficient cryopreservation method allows cryopreservation of large numbers of ready-to-use adherent cells that maintain pluripotency.

Key words

Cryopreservation Pluripotent stem cells Surface-based vitrification Vitrification 

Notes

Acknowledgments

The work with human embryonic stem cells was permitted by the Robert Koch Institute (18 and 44 permission) and carried out according to German law.

References

  1. 1.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147CrossRefGoogle Scholar
  2. 2.
    Odorico JS, Kaufman DS, Thomson JA (2001) Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19:193–204CrossRefGoogle Scholar
  3. 3.
    Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW (1996) Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 18:173–179CrossRefGoogle Scholar
  4. 4.
    Lerou PH, Daley GQ (2005) Therapeutic potential of embryonic stem cells. Blood Rev 19:321–331CrossRefGoogle Scholar
  5. 5.
    Strulovici Y, Leopold PL, O’Connor TP, Pergolizzi RG, Crystal RG (2007) Human embryonic stem cells and gene therapy. Mol Ther 15:850–866Google Scholar
  6. 6.
    Schulz JC, Stumpf PS, Katsen-Globa A, Sachinidis A, Hescheler J, Zimmermann H (2012) First steps towards the successful surface-based cultivation of human embryonic stem cells in hanging drop systems. Eng Life Sci 12:584–587CrossRefGoogle Scholar
  7. 7.
    Katsen-Globa A, Meiser I, Petrenko YA, Ivanov RV, Lozinsky VI, Zimmermann H, Petrenko AY (2014) Towards ready-to-use 3-D scaffolds for regenerative medicine: adhesion-based cryopreservation of human mesenchymal stem cells attached and spread within alginate-gelatin cryogel scaffolds. J Mater Sci Mater Med 25:857–871CrossRefGoogle Scholar
  8. 8.
    Acker JP, Larese A, Yang H, Petrenko A, McGann LE (1999) Intracellular ice formation is affected by cell interactions. Cryobiology 38:363–371CrossRefGoogle Scholar
  9. 9.
    Heng BC, Ye CP, Liu H, Toh WS, Rufaihah AJ, Yang Z et al (2006) Loss of viability during freeze-thaw of intact and adherent human embryonic stem cells with conventional slow-cooling protocols is predominantly due to apoptosis rather than cellular necrosis. J Biomed Sci 13:433–445CrossRefGoogle Scholar
  10. 10.
    Liu JC, Guan X, Ryan JA, Rivera AG, Mock C, Agrawal V et al (2013) High mitochondrial priming sensitizes hESCs to DNA-damage-induced apoptosis. Cell Stem Cell 13:483–491CrossRefGoogle Scholar
  11. 11.
    Dumitru R, Gama V, Fragan BM, Bower JJ, Swahari V, Pevny LH, Deshmukh M (2012) Human embryonic stem cells have constitutively active Bax at the Golgi and are primed to undergo rapid apoptosis. Mol Cell 46:573–583CrossRefGoogle Scholar
  12. 12.
    Wowk B (2010) Thermodynamic aspects of vitrification. Cryobiology 60:11–22CrossRefGoogle Scholar
  13. 13.
    Richards M, Fong CY, Tan S, Chan WK, Bongso A (2004) An efficient and safe xeno-free cryopreservation method for the storage of human embryonic stem cells. Stem Cells 22:779–789CrossRefGoogle Scholar
  14. 14.
    Beier AF, Schulz JC, Dörr D, Katsen-Globa A, Sachinidis A, Hescheler J, Zimmermann H (2011) Effective surface-based cryopreservation of human embryonic stem cells by vitrification. Cryobiology 63:175–185CrossRefGoogle Scholar
  15. 15.
    Richards M, Tan SP, Tan JH, Chan WK, Bongso A (2004) The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 22:51–64CrossRefGoogle Scholar
  16. 16.
    Sathananthan H, Pera M, Trounson A (2002) The fine structure of human embryonic stem cells. Reprod Biomed Online 4:56–61CrossRefGoogle Scholar
  17. 17.
    Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, Itskovitz-Eldor J, Thomson JA (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271–278CrossRefGoogle Scholar
  18. 18.
    Narumiya S, Ishizaki T, Uehata M (2000) Use and properties of ROCK-specific inhibitor Y-27632. Methods Enzymol 325:273–284CrossRefGoogle Scholar
  19. 19.
    Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T et al (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686CrossRefGoogle Scholar
  20. 20.
    Li XY, Meng GL, Krawetz R, Liu SY, Rancourt DE (2008) The ROCK inhibitor Y-27632 enhances the survival rate of human embryonic stem cells following cryopreservation. Stem Cells Dev 17:1079–1085CrossRefGoogle Scholar
  21. 21.
    Kim SJ, Park JH, Lee JE, Kim JM, Lee JB, Moon SY et al (2004) Effects of type IV collagen and laminin on the cryopreservation of human embryonic stem cells. Stem Cells 22:950–961CrossRefGoogle Scholar
  22. 22.
    Lee JY, Lee JE, Kim DK, Yoon TK, Chung HM, Lee DR (2010) High concentration of synthetic serum, stepwise equilibration and slow cooling as an efficient technique for large-scale cryopreservation of human embryonic stem cells. Fertil Steril 93:976–985CrossRefGoogle Scholar
  23. 23.
    Chen SU, Lien YR, Chao K, Lu HF, Ho HN, Yang YS (2000) Cryopreservation of mature human oocytes by vitrification with ethylene glycol in straws. Fertil Steril 74:804–808CrossRefGoogle Scholar
  24. 24.
    Reubinoff BE, Pera MF, Vajta G, Trounson AO (2001) Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum Reprod 16:2187–2194CrossRefGoogle Scholar
  25. 25.
    Hornung J, Muller T, Fuhr G (1996) Cryopreservation of anchorage-dependent mammalian cells fixed to structured glass and silicon substrates. Cryobiology 33:260–270CrossRefGoogle Scholar
  26. 26.
    Beier AF, Schulz JC, Zimmermann H (2013) Vitrification with a twist: towards a sterile, serum-free surface-based vitrification of hESCs. Cryobiology 66:8–16CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Julia C. Neubauer
    • 1
  • Axel F. Beier
    • 1
    • 2
  • Niels Geijsen
    • 2
    • 3
  • Heiko Zimmermann
    • 1
    • 4
    Email author
  1. 1.Fraunhofer Institute for Biomedical Technology (IBMT)St. IngbertGermany
  2. 2.Hubrecht Institute and University Medical Center UtrechtUtrechtNetherlands
  3. 3.Utrecht University School for Veterinary MedicineUtrechtNetherlands
  4. 4.Saarland UniversitySaarbrückenGermany

Personalised recommendations