Skip to main content

A Rapid, Simple, and Inexpensive Method for the Preparation of Strand-Specific RNA-Seq Libraries

  • Protocol
  • First Online:
Polyadenylation in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1255))

Abstract

High-throughput sequencing of short cDNA tags, or RNA-Seq, has become a staple of genome-wide gene expression studies in plants. RNA-Seq libraries necessarily contain tags that correspond to the mRNA-poly(A) junction, or polyadenylation site, and thus may be mined for data that can help study alternative polyadenylation. This report presents a simple, rapid, and inexpensive method for preparing strand-specific RNA-Seq libraries from varying quantities of total RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunt AG (2008) Messenger RNA 3′ end formation in plants. Curr Top Microbiol Immunol 326:151–177

    CAS  PubMed  Google Scholar 

  2. Tan X, Meyers BC, Kozik A, West MA, Morgante M, St Clair DA, Bent AF, Michelmore RW (2007) Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis. BMC Plant Biol 7:56. doi:10.1186/1471-2229-7-56

    Article  PubMed Central  PubMed  Google Scholar 

  3. Rataj K, Simpson GG (2014) Message ends: RNA 3′ processing and flowering time control. J Exp Bot 65(2):353–363. doi:10.1093/jxb/ert439

    Article  CAS  PubMed  Google Scholar 

  4. Ma L, Pati PK, Liu M, Li QQ, Hunt AG (2013) High throughput characterizations of poly(A) site choice in plants. Methods. doi:10.1016/j.ymeth.2013.06.037

    Google Scholar 

  5. Thomas PE, Wu X, Liu M, Gaffney B, Ji G, Li QQ, Hunt AG (2012) Genome-wide control of polyadenylation site choice by CPSF30 in Arabidopsis. Plant Cell 24(11):4376–4388. doi:10.1105/tpc.112.096107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Wu X, Liu M, Downie B, Liang C, Ji G, Li QQ, Hunt AG (2011) Genome-wide landscape of polyadenylation in Arabidopsis provides evidence for extensive alternative polyadenylation. Proc Natl Acad Sci U S A 108(30):12533–12538. doi:10.1073/pnas.1019732108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Duc C, Sherstnev A, Cole C, Barton GJ, Simpson GG (2013) Transcription termination and chimeric RNA formation controlled by Arabidopsis thaliana FPA. PLoS Genet 9(10):e1003867. doi:10.1371/journal.pgen.1003867

    Article  PubMed Central  PubMed  Google Scholar 

  8. Lyons R, Iwase A, Gansewig T, Sherstnev A, Duc C, Barton GJ, Hanada K, Higuchi-Takeuchi M, Matsui M, Sugimoto K, Kazan K, Simpson GG, Shirasu K (2013) The RNA-binding protein FPA regulates flg22-triggered defense responses and transcription factor activity by alternative polyadenylation. Sci Rep 3:2866. doi:10.1038/srep02866

    Article  PubMed Central  PubMed  Google Scholar 

  9. Sherstnev A, Duc C, Cole C, Zacharaki V, Hornyik C, Ozsolak F, Milos PM, Barton GJ, Simpson GG (2012) Direct sequencing of Arabidopsis thaliana RNA reveals patterns of cleavage and polyadenylation. Nat Struct Mol Biol 19(8):845–852. doi:10.1038/nsmb.2345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Janbon G, Ormerod KL, Paulet D, Byrnes EJ 3rd, Yadav V, Chatterjee G, Mullapudi N, Hon CC, Billmyre RB, Brunel F, Bahn YS, Chen W, Chen Y, Chow EW, Coppee JY, Floyd-Averette A, Gaillardin C, Gerik KJ, Goldberg J, Gonzalez-Hilarion S, Gujja S, Hamlin JL, Hsueh YP, Ianiri G, Jones S, Kodira CD, Kozubowski L, Lam W, Marra M, Mesner LD, Mieczkowski PA, Moyrand F, Nielsen K, Proux C, Rossignol T, Schein JE, Sun S, Wollschlaeger C, Wood IA, Zeng Q, Neuveglise C, Newlon CS, Perfect JR, Lodge JK, Idnurm A, Stajich JE, Kronstad JW, Sanyal K, Heitman J, Fraser JA, Cuomo CA, Dietrich FS (2014) Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation. PLoS Genet 10(4):e1004261. doi:10.1371/journal.pgen.1004261

    Article  PubMed Central  PubMed  Google Scholar 

  11. Schlackow M, Marguerat S, Proudfoot NJ, Bahler J, Erban R, Gullerova M (2013) Genome-wide analysis of poly(A) site selection in Schizosaccharomyces pombe. RNA 19(12):1617–1631. doi:10.1261/rna.040675.113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Zhao Z, Wu X, Kumar PK, Dong M, Ji G, Li QQ, Liang C (2014) Bioinformatics analysis of alternative polyadenylation in green alga Chlamydomonas reinhardtii using transcriptome sequences from three different sequencing platforms. G3 (Bethesda) 4(5):871–883. doi:10.1534/g3.114.010249

    Article  CAS  Google Scholar 

  13. Jimenez-Gomez JM (2011) Next generation quantitative genetics in plants. Front Plant Sci 2:77. doi:10.3389/fpls.2011.00077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. O'Rourke JA, Bolon YT, Bucciarelli B, Vance CP (2014) Legume genomics: understanding biology through DNA and RNA sequencing. Ann Bot 113(7):1107–1120. doi:10.1093/aob/mcu072

    Article  PubMed  Google Scholar 

  15. Strickler SR, Bombarely A, Mueller LA (2012) Designing a transcriptome next-generation sequencing project for a nonmodel plant species. Am J Bot 99(2):257–266. doi:10.3732/ajb.1100292

    Article  CAS  PubMed  Google Scholar 

  16. Ramskold D, Luo S, Wang YC, Li R, Deng Q, Faridani OR, Daniels GA, Khrebtukova I, Loring JF, Laurent LC, Schroth GP, Sandberg R (2012) Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 30(8):777–782. doi:10.1038/nbt.2282

    Article  PubMed Central  PubMed  Google Scholar 

  17. Zhu YY, Machleder EM, Chenchik A, Li R, Siebert PD (2001) Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques 30(4):892–897

    CAS  PubMed  Google Scholar 

  18. Buonaccorsi V, Peterson M, Lamendella G, Newman J, Trun N, Tobin T, Aguilar A, Hunt A, Praul C, Grove D, Roney J, Roberts W (2014) Vision and change through the genome consortium for active teaching using next-generation sequencing (GCAT-SEEK). CBE Life Sci Educ 13(1):1–2. doi:10.1187/cbe.13-10-0195

    PubMed Central  PubMed  Google Scholar 

  19. Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10(11):1096–1098. doi:10.1038/nmeth.2639

    Article  CAS  PubMed  Google Scholar 

  20. Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S, Sandberg R (2014) Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9(1):171–181. doi:10.1038/nprot.2014.006

    Article  CAS  PubMed  Google Scholar 

  21. Pinto FL, Lindblad P (2010) A guide for in-house design of template-switch-based 5′ rapid amplification of cDNA ends systems. Anal Biochem 397(2):227–232. doi:10.1016/j.ab.2009.10.022

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (awards IOS-0817818 and MCB-1243849). The author thanks the staff of AGTC for many helpful discussions and for much patience, and Carol Von Lanken for excellent technical and administrative assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur G. Hunt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hunt, A.G. (2015). A Rapid, Simple, and Inexpensive Method for the Preparation of Strand-Specific RNA-Seq Libraries. In: Hunt, A., Li, Q. (eds) Polyadenylation in Plants. Methods in Molecular Biology, vol 1255. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2175-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2175-1_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2174-4

  • Online ISBN: 978-1-4939-2175-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics