Skip to main content

Mobile Based Gold Nanoprobe TB Diagnostics for Point-of-Need

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1256))

Abstract

Nanotechnology based diagnostics has provided improved tools for pathogen detection and sensitive and specific characterization of antibiotic resistance signatures. Tuberculosis (TB) is caused by members of the Mycobacterium tuberculosis Complex (MTBC) and, according to the World Health Organization, is one of the most serious infectious diseases in the world. Recent advances in molecular diagnostics of TB have improved both the detection time and sensitivity but they still require specialized technical personnel and cumbersome laboratory equipment. Diagnostics at point-of-need is crucial to TB control as it may provide rapid identification of pathogen together with the resistance profile of TB strains, originated from single nucleotide polymorphisms (SNPs) in different loci, allowing for a more accurate indication of the adequate therapy.

Gold nanoparticles have been widely used in molecular diagnostics platforms. Here, we describe the use of gold nanoprobes (oligonucleotide functionalized gold nanoparticles) to be used in a non-cross-linking colorimetric method for the direct detection of specific DNA targets. Due to the remarkable optical properties of gold nanoparticles, this detection system provides colorimetric detection of the pathogen together with the potential of identification of several single nucleotide polymorphisms (SNPs) involved in TB resistance to antibiotics. For point-of-need use, we adapted this strategy to a low-cost mobile scheme using a paper based revelation platform and where the spectral signature is transposed to RGB data via a smartphone device. This way, identification of pathogen and characterization of resistance signatures is achieved at point-of-need.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Azzazy HME, Mansour MMH (2009) In vitro diagnostic prospects of nanoparticles. Clin Chim Acta 403:1–8

    Article  CAS  Google Scholar 

  2. Veigas B, Doria G, Baptista PV (2012) Nanodiagnostics for tuberculosis. In: Cardona PJ (ed) Understanding tuberculosis—global experiences and innovative approaches to the diagnosis. InTech. pp 257–276

    Google Scholar 

  3. Baptista P, Pereira E, Eaton P et al (2008) Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 391:943–950

    Article  CAS  Google Scholar 

  4. Doria G, Conde J, Veigas B et al (2012) Noble metal nanoparticles for biosensing applications. Sensors 12:1657–1687

    Article  CAS  Google Scholar 

  5. WHO (2010) Global tuberculosis control: WHO Report 2010. WHO Press, Geneva. ISBN 978-92-4-156406-9

    Google Scholar 

  6. Deun AV, Martin A, Palomino JC (2010) Diagnosis of drug-resistant tuberculosis: reliability and rapidity of detection. Int J Tuberc Lung Dis 14:131–140

    Google Scholar 

  7. Abebe G, Paasch F, Apers L et al (2011) Tuberculosis drug resistance testing by molecular methods: opportunities and challenges in resource limited settings. J Microbiol Methods 84:155–160

    Article  CAS  Google Scholar 

  8. Miller LP, Crawford JT, Shinnick TM (1994) The rpoB gene of Mycobacterium tuberculosis. Antimicrob Agents Chemother 38:805–811

    Article  CAS  Google Scholar 

  9. Musser JM (1995) Antimicrobial agent resistance in Mycobacteria: molecular genetic insights. Clin Microbiol Rev 8:496–514

    CAS  Google Scholar 

  10. Soini H, Musser JM (2001) Molecular diagnosis of Mycobacteria. Clin Chem 47:809–814

    CAS  Google Scholar 

  11. Telenti A, Imboden P, Marchesi F et al (1993) Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 341:647–651

    Article  CAS  Google Scholar 

  12. Baptista PV, Koziol-Montewka M, Paluch-Oles J et al (2006) Gold-nanoparticle-probe-based assay for rapid and direct detection of Mycobacterium tuberculosis DNA in clinical samples. Clin Chem 52:1433–1434

    Article  CAS  Google Scholar 

  13. Conde J, de la Fuente JM, Baptista PV (2010) RNA quantification using gold nanoprobes—application to cancer diagnostics. J Nanobiotechnology 8:5

    Article  Google Scholar 

  14. Costa P, Amaro A, Botelho A et al (2010) Gold nanoprobes assay for identification of mycobacteria from the Mycobacterium tuberculosis complex. Clin Microbiol Infect 16:1464–1469

    Article  CAS  Google Scholar 

  15. Doria G, Franco R, Baptista P (2007) Nanodiagnostics: fast colorimetric method for single nucleotide polymorphism/mutation detection. IET Nanobiotechnol 1:53–57

    Article  CAS  Google Scholar 

  16. Veigas B, Machado D, Perdigão J et al (2010) Au-nanoprobes for detection of SNPs associated with antibiotic resistance in Mycobacterium tuberculosis. Nanotechnology 21:415101

    Article  Google Scholar 

  17. Silva LB, Veigas B, Doria G et al (2011) Portable optoelectronic biosensing platform for identification of mycobacteria from the Mycobacterium tuberculosis complex. Biosens Bioelectron 26:2012–2017

    Article  CAS  Google Scholar 

  18. Veigas B, Jacob JM, Costa MN (2012) Gold on paper-paper platform for Au-nanoprobe TB detection. Lab Chip 12:4802–4808

    Article  CAS  Google Scholar 

  19. Carrilho E, Phillips ST, Vella SJ et al (2009) Paper microzone plates. Anal Chem 81:5990–5998

    Article  CAS  Google Scholar 

  20. Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81:7091–7095

    Article  CAS  Google Scholar 

  21. Kent PT, Kubica GP (1985) Mycobacteriology: a guide for the level III laboratory. US Dept of Health and Human Services, Public Health Service, Centers for Disease Control, Atlanta, GA

    Google Scholar 

  22. Conde J, Doria G, de la Fuente JM, Baptista PV (2012) RNA quantification using noble metal nanoprobes: simultaneous identification of several different mRNA targets using color multiplexing and application to cancer diagnostics. Methods Mol Biol 906:71–87

    Article  CAS  Google Scholar 

  23. Doria G, Baumgartner BG, Franco R et al (2010) Optimizing Au-nanoprobes for specific sequence discrimination. Colloids Surf B Biointerfaces 77:122–124

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Baptista .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Veigas, B., Fortunato, E., Baptista, P.V. (2015). Mobile Based Gold Nanoprobe TB Diagnostics for Point-of-Need. In: Rasooly, A., Herold, K. (eds) Mobile Health Technologies. Methods in Molecular Biology, vol 1256. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2172-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2172-0_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2171-3

  • Online ISBN: 978-1-4939-2172-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics