Skip to main content

Mobile Flow Cytometer for mHealth

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1256))

Abstract

Flow cytometry is used for cell counting and analysis in numerous clinical and environmental applications. However flow cytometry is not used in mHealth mainly because current flow cytometers are large, expensive, power-intensive devices designed to operate in a laboratory. Their design results in a lack of portability and makes them unsuitable for mHealth applications. Another limitation of current technology is the low volumetric throughput rates that are not suitable for rapid detection of rare cells.

To address these limitations, we describe here a novel, low-cost, mobile flow cytometer based on wide-field imaging with a webcam for large volume and high throughput fluorescence detection of rare cells as a simulation for circulating tumor cells (CTCs) detection. The mobile flow cytometer uses a commercially available webcam capable of 187 frames per second video capture at a resolution of 320 × 240 pixels. For fluorescence detection, a 1 W 450 nm blue laser is used for excitation of Syto-9 fluorescently stained cells detected at 535 nm. A wide-field flow cell was developed for large volume analysis that allows for the linear velocity of target cells to be lower than in conventional hydrodynamic focusing flow cells typically used in cytometry. The mobile flow cytometer was found to be capable of detecting low concentrations at flow rates of 500 μL/min, suitable for rare cell detection in large volumes. The simplicity and low cost of this device suggests that it may have a potential clinical use for mHealth flow cytometry for resource-poor settings associated with global health.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Golden JP, Kim JS, Erickson JS, Hilliard LR, Howell PB, Anderson GP et al (2009) Multi-wavelength microflow cytometer using groove-generated sheath flow. Lab Chip 9(13):1942–1950, Epub 2009/06/18

    Article  CAS  Google Scholar 

  2. Howell PB Jr, Golden JP, Hilliard LR, Erickson JS, Mott DR, Ligler FS (2008) Two simple and rugged designs for creating microfluidic sheath flow. Lab Chip 8(7):1097–1103, Epub 2008/06/28

    Article  CAS  Google Scholar 

  3. Taitt CR, Anderson GP, Ligler FS (2005) Evanescent wave fluorescence biosensors. Biosens Bioelectron 20(12):2470–2487, Epub 2005/04/28

    Article  CAS  Google Scholar 

  4. Ngundi MM, Qadri SA, Wallace EV, Moore MH, Lassman ME, Shriver-Lake LC et al (2006) Detection of deoxynivalenol in foods and indoor air using an array biosensor. Environ Sci Technol 40(7):2352–2356

    Article  CAS  Google Scholar 

  5. Moreno-Bondi MC, Taitt CR, Shriver-Lake LC, Ligler FS (2006) Multiplexed measurement of serum antibodies using an array biosensor. Biosens Bioelectron 21(10):1880–1886

    Article  CAS  Google Scholar 

  6. Ligler FS, Sapsford KE, Golden JP, Shriver-Lake LC, Taitt CR, Dyer MA et al (2007) The array biosensor: portable, automated systems. Anal Sci 23(1):5–10

    Article  Google Scholar 

  7. Kostov Y, Sergeev N, Wilson S, Herold KE, Rasooly A (2009) A simple portable electroluminescence illumination-based CCD detector. Methods Mol Biol 503:259–272, Epub 2009/01/20

    Article  CAS  Google Scholar 

  8. Sapsford KE, Sun S, Francis J, Sharma S, Kostov Y, Rasooly A (2008) A fluorescence detection platform using spatial electroluminescent excitation for measuring botulinum neurotoxin A activity. Biosens Bioelectron 24(4):618–625, Epub 2008/07/23

    Article  CAS  Google Scholar 

  9. Sun S, Francis J, Sapsford KE, Kostov Y, Rasooly A (2010) Multi-wavelength Spatial LED illumination based detector for in vitro detection of botulinum neurotoxin A activity. Sens Actuators B 146(1–8):297–306, Epub 2010/05/26

    Article  CAS  Google Scholar 

  10. Sun S, Ossandon M, Kostov Y, Rasooly A (2009) Lab-on-a-chip for botulinum neurotoxin a (BoNT-A) activity analysis. Lab Chip 9(22):3275–3281, Epub 2009/10/30

    Article  CAS  Google Scholar 

  11. Sun S, Yang M, Kostov Y, Rasooly A (2010) ELISA-LOC: lab-on-a-chip for enzyme-linked immunodetection. Lab Chip 10(16):2093–2100, Epub 2010/06/15

    Article  CAS  Google Scholar 

  12. Zhu H, Ozcan A (2013) Wide-field fluorescent microscopy and fluorescent imaging flow cytometry on a cell-phone. J Vis Exp. doi:10.3791/50451, Epub 2013/04/23

    Google Scholar 

  13. Zhu H, Mavandadi S, Coskun AF, Yaglidere O, Ozcan A (2011) Optofluidic fluorescent imaging cytometry on a cell phone. Anal Chem 83(17):6641–6647, Epub 2011/07/22

    Article  CAS  Google Scholar 

  14. Wei Q, Qi H, Luo W, Tseng D, Ki SJ, Wan Z et al (2013) Fluorescent imaging of single nanoparticles and viruses on a smart phone. ACS Nano 7(10):9147–9155, Epub 2013/09/11

    Article  CAS  Google Scholar 

  15. Coskun AF, Nagi R, Sadeghi K, Phillips S, Ozcan A (2013) Albumin testing in urine using a smart-phone. Lab Chip 13(21):4231–4238, Epub 2013/09/03

    Article  CAS  Google Scholar 

  16. Navruz I, Coskun AF, Wong J, Mohammad S, Tseng D, Nagi R et al (2013) Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array. Lab Chip 13(20):4015–4023, Epub 2013/08/14

    Article  CAS  Google Scholar 

  17. Zhu H, Sencan I, Wong J, Dimitrov S, Tseng D, Nagashima K et al (2013) Cost-effective and rapid blood analysis on a cell-phone. Lab Chip 13(7):1282–1288, Epub 2013/02/09

    Article  CAS  Google Scholar 

  18. Zhu H, Sikora U, Ozcan A (2012) Quantum dot enabled detection of Escherichia coli using a cell-phone. Analyst 137(11):2541–2544, Epub 2012/03/08

    Article  CAS  Google Scholar 

  19. Zhu H, Yaglidere O, Su TW, Tseng D, Ozcan A (2011) Wide-field fluorescent microscopy on a cell-phone. Conference proceedings: Annual international conference of the IEEE engineering in medicine and biology society, IEEE Engineering in Medicine and Biology Society Conference, 2011. pp 6801–6804. Epub 2012/01/19

    Google Scholar 

  20. Zhu H, Yaglidere O, Su TW, Tseng D, Ozcan A (2011) Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip 11(2):315–322, Epub 2010/11/11

    Article  CAS  Google Scholar 

  21. Rasooly A, Bruck HA, Kostov Y (2013) An ELISA lab-on-a-chip (ELISA-LOC). Methods Mol Biol 949:451–471, Epub 2013/01/19

    Article  Google Scholar 

  22. Rasooly A, Kostov Y, Bruck HA (2013) Charged-coupled device (CCD) detectors for lab-on-a chip (LOC) optical analysis. Methods Mol Biol 949:365–385, Epub 2013/01/19

    Article  CAS  Google Scholar 

  23. Balsam J, Bruck HA, Rasooly A (2013) Capillary array waveguide amplified fluorescence detector for mHealth. Sens Actuators B 186:711–717, Epub 2013/09/17

    Article  CAS  Google Scholar 

  24. Balsam J, Rasooly R, Bruck HA, Rasooly A (2014) Thousand-fold fluorescent signal amplification for mHealth diagnostics. Biosens Bioelectron 51:1–7, Epub 2013/08/10

    Article  CAS  Google Scholar 

  25. Balsam J, Ossandon M, Bruck HA, Lubensky I, Rasooly A (2013) Low-cost technologies for medical diagnostics in low-resource settings. Expert Opin Med Diagn 7(3):243–255, Epub 2013/03/14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avraham Rasooly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Balsam, J., Bruck, H.A., Rasooly, A. (2015). Mobile Flow Cytometer for mHealth. In: Rasooly, A., Herold, K. (eds) Mobile Health Technologies. Methods in Molecular Biology, vol 1256. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2172-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2172-0_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2171-3

  • Online ISBN: 978-1-4939-2172-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics