Skip to main content

Behavioral Consequences of Early Disruption and Injury to the Developing Brain: Studying Rodent Models

  • Protocol
  • First Online:
  • 977 Accesses

Part of the book series: Neuromethods ((NM,volume 94))

Abstract

This chapter addresses the unique considerations inherent to working with developmental rodent models when selecting and implementing behavioral tasks, including maze assessments. Discussion focuses on the unique perspective of developmental research, and specifically, research modeling developmental disruption or injury to the brain. The chapter begins with a brief overview of mammalian brain development, and a summary of some common developmental disruption rodent models currently in use. Next, the chapter addresses the requirements and limitations of tasks selection and implementation when performing developmental neuropathological rodent behavioral research. Finally, the chapter discusses other variables known to interact with development and injury outcomes, such as species/strain, sex and hormones, and prior test experience, and how such variables must receive extra consideration when performing developmental work.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Alexander M, Garbus H, Smith AL, Rosenkrantz TS, Fitch RH (2014) Behavioral and histological outcomes following neonatal HI injury in a preterm (P3) and term (P7) rodent model. Behav Brain Res 259:85–96

    Google Scholar 

  2. Bâ A, Seri BV (1995) Psychomotor functions in developing rats: ontogenetic approach to structure-function relationships. Neurosci Biobehav Rev 19(3):413–425

    Article  PubMed  Google Scholar 

  3. Bachevalier J, Beauregard M (1993) Maturation of medial temporal lobe memory functions in rodents, monkeys, and humans. Hippocampus 3:191–201

    PubMed  Google Scholar 

  4. Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3(9):728–739

    Article  CAS  PubMed  Google Scholar 

  5. Benasich AA, Tallal P (2002) Infant discrimination of rapid auditory cues predicts later language impairment. Behav Brain Res 136(1):31–49

    Article  PubMed  Google Scholar 

  6. Bimonte HA, Hyde LA, Hoplight BJ, Denenberg VH (2000) In two species, females exhibit superior working memory and inferior reference memory on the water radial-arm maze. Physiol Behav 70(3–4):311–317

    Article  CAS  PubMed  Google Scholar 

  7. Bruce-Keller AJ, Umberger G, McFall R, Mattson MP (1999) Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Ann Neurol 45(1):8–15

    Article  CAS  PubMed  Google Scholar 

  8. Caldji C, Tannenbaum B, Sharma S, Francis D, Plotsky PM, Meaney MJ (1998) Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proc Natl Acad Sci 95(9):5335–5340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Centanni TM, Booker AB, Sloan AM, Chen F, Maher BJ, Carraway RS, Khodaparast N, Rennaker R, LoTurco JJ, Kilgard MP (2013) Knockdown of the dyslexia-associated gene Kiaa0319 impairs temporal responses to speech stimuli in rat primary auditory cortex. Cereb Cortex. doi:10.1093/cercor/bht028

    PubMed  Google Scholar 

  10. Champagne FA, Francis DD, Mar A, Meaney MJ (2003) Variations in maternal care in the rat as a mediating influence for the effects of environment on development. Physiol Behav 79(3):359–371

    Article  CAS  PubMed  Google Scholar 

  11. Chou IC, Trakht T, Signori C, Smith J, Felt BT, Vazquez DM, Barks JD (2001) Behavioral/environmental intervention improves learning after cerebral hypoxia-ischemia in rats. Stroke 32(9):2192–2197

    Article  CAS  PubMed  Google Scholar 

  12. Clancy B, Kersh B, Hyde J, Darlington R, Anand KJS, Finlay B (2007) Web-based method for translating neurodevelopment from laboratory species to humans. Neuroinformatics 5(1):79–94

    PubMed  Google Scholar 

  13. Crawley JN (2004) Designing mouse behavioral tasks relevant to autistic-like behaviors. Ment Retard Dev Disabil Res Rev 10(4):248–258

    Article  PubMed  Google Scholar 

  14. Dean PW, Rotundo R, Myers M, Denenberg VH (1976) Stimulation in infancy: unique effects of handling. Physiol Behav 17(5):781–784

    Article  Google Scholar 

  15. Denenberg VH, Hofmann M, Garbanati JA, Sherman GF, Rosen GD, Yutzey DA (1980) Handling in infancy, taste aversion, and brain laterality in rats. Brain Res 200(1):123–133

    Article  CAS  PubMed  Google Scholar 

  16. Diaz AL, Gleeson JG (2009) The molecular and genetic mechanisms of neocortex development. Clin Perinatol 36(3):503–512

    Article  PubMed Central  PubMed  Google Scholar 

  17. Fitch RH, Tallal P (2003) Neural mechanisms of language-based learning impairments: insights from human populations and animal models. Behav Cogn Neurosci Rev 2(3):155–178

    Article  PubMed  Google Scholar 

  18. Fitch RH, Threlkeld SW, McClure MM, Peiffer AM (2008) Use of a modified prepulse inhibition paradigm to assess complex auditory discrimination in rodents. Brain Res Bull 76(1–2):1–7

    Article  PubMed Central  PubMed  Google Scholar 

  19. Galaburda AM, Sherman GF, Rosen GD, Aboitiz F, Geschwind N (1985) Developmental dyslexia: four consecutive patients with cortical anomalies. Ann Neurol 18(2):222–233

    Article  CAS  PubMed  Google Scholar 

  20. Goldman PS, Galkin TW (1978) Prenatal removal of frontal association cortex in the fetal rhesus monkey: anatomical and functional consequences in postnatal life. Brain Res 152(3):451–485

    Article  CAS  PubMed  Google Scholar 

  21. Gräff J, Mansuy IM (2008) Epigenetic codes in cognition and behaviour. Behav Brain Res 192(1):70–87

    Article  PubMed  Google Scholar 

  22. Hall JL, Berman RF (1995) Juvenile experience alters strategies used to solve the radial arm maze in rats. Psychobiology 23(3):195–198

    Google Scholar 

  23. Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New York

    Google Scholar 

  24. Herman AE, Galaburda AM, Fitch RH, Carter AR, Rosen GD (1997) Cerebral microgyria, thalamic cell size and auditory temporal processing in male and female rats. Cereb Cortex 7(5):453–464

    Article  CAS  PubMed  Google Scholar 

  25. Hill CA, Fitch RH (2012) Sex differences in mechanisms and outcome of neonatal hypoxia-ischemia in rodent models: implications for sex-specific neuroprotection in clinical neonatal practice. Neurol Res Int 2012:1–9

    Article  Google Scholar 

  26. Hill CA, Threlkeld SW, Fitch RH (2011) Early testosterone modulated sex differences in behavioral outcome following neonatal hypoxia ischemia in rats. Int J Dev Neurosci 29(4):381–388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387(2):167–178

    Article  CAS  PubMed  Google Scholar 

  28. Hyde LA, Hoplight BJ, Denenberg VH (1998) Water version of the radial-arm maze: learning in three inbred strains of mice. Brain Res 785(2):236–244

    Article  CAS  PubMed  Google Scholar 

  29. Ichord RN (1993) Neurologic complications (of prematurity). In: Witter FR, Keith LG (eds) Textbook of prematurity: antecedents, treatment, and outcome. Little, Brown, and Co., Boston, MA, pp 305–320

    Google Scholar 

  30. Ignacio M, Kimm E, Kageyama G, Yu J, Robertson R (1995) Postnatal migration of neurons and formation of laminae in rat cerebral cortex. Anat Embryol 191(2):89–100

    Article  CAS  PubMed  Google Scholar 

  31. Jonasson Z (2005) Meta-analysis of sex differences in rodent models of learning and memory: a review of behavioral and biological data. Neurosci Biobehav Rev 28(8):811–825

    Article  PubMed  Google Scholar 

  32. Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274(5290):1133–1138

    Article  CAS  PubMed  Google Scholar 

  33. Kennard MA (1936) Age and other factors in motor recovery from precentral lesions in monkeys. Am J Physiol 115(1):138–146

    Google Scholar 

  34. Kolb B, Gibb R (1991) Sparing of function after neonatal frontal lesions correlates with increased cortical dendritic branching: a possible mechanism for the Kennard effect. Behav Brain Res 43(1):51–56

    Article  CAS  PubMed  Google Scholar 

  35. Kolb B, Tomie J (1988) Recovery from early cortical damage in rats: IV. Effects of hemidecortication at 1, 5 or 10 days of age on cerebral anatomy and behavior. Behav Brain Res 28(3):259–274

    Article  CAS  PubMed  Google Scholar 

  36. König N, Roch G, Marty R (1975) The onset of synaptogenesis in rat temporal cortex. Anat Embryol 148(1):73–87

    Article  PubMed  Google Scholar 

  37. Lang JT, McCullough LD (2008) Pathways to ischemic neuronal cell death: are sex differences relevant. J Transl Med 6:33. doi:10.1186/1479-5876-6-33

    Article  PubMed Central  PubMed  Google Scholar 

  38. Liu D, Diorio J, Day JC, Francis DD, Meaney MJ (2000) Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nat Neurosci 3(8):799–806

    Article  CAS  PubMed  Google Scholar 

  39. Marín O, Rubenstein JL (2001) A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2(11):780–790

    Article  PubMed  Google Scholar 

  40. Marino C, Citterio A, Giorda R, Facoetti A, Menozzi G, Vanzin L, Lorusso ML, Nobile M, Molteni M (2007) Association of short-term memory with a variant within DYX1C1 in developmental dyslexia. Genes Brain Behav 6(7):640–646

    Article  CAS  PubMed  Google Scholar 

  41. McClure MM, Peiffer AM, Rosen GD, Fitch RH (2005) Auditory processing deficits in rats with neonatal hypoxic-ischemic injury. Int J Dev Neurosci 23(4):351–362

    Article  CAS  PubMed  Google Scholar 

  42. McClure MM, Threlkeld SW, Fitch RH (2006) The effects of erythropoietin on auditory processing following neonatal hypoxic–ischemic injury. Brain Res 1087(1):190–195

    Article  CAS  PubMed  Google Scholar 

  43. Meaney M (2001) Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci 24:1161–1192

    Article  CAS  PubMed  Google Scholar 

  44. Miller RH, Ono K (1998) Morphological analysis of the early stages of oligodendrocyte development in the vertebrate central nervous system. Microsc Res Tech 41(5):441–453

    Article  CAS  PubMed  Google Scholar 

  45. Morell P, Quarles RH (1999) Myelin formation, structure and biochemistry. In: Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (eds) Basic neurochemistry: molecular, cellular and medical aspects, 6, Chapter 4th edn. Lippincott-Raven, Philadelphia

    Google Scholar 

  46. Nowakowski RS, Hayes NL (2002) General principles of CNS development. In: Brain development and cognition. Blackwell Publishers Ltd, Oxford, pp 57–82. doi:10.1002/9780470753507.ch5

    Google Scholar 

  47. Nyakas C, Buwald B, Luiten PGM (1996) Hypoxia and brain development. Prog Neurobiol 49(1):1–51

    Article  CAS  PubMed  Google Scholar 

  48. Otake M, Schull W, Yoshimaru H (1991) A review of forty-five years study of Hiroshima and Nagasaki atomic bomb survivors. Brain damage among the prenatally exposed. J Radiat Res 32(Suppl):249–264

    Article  PubMed  Google Scholar 

  49. Paus T, Zijdenbos A, Worsley K, Collins DL, Blumenthal J, Giedd JN, Rapoport JL, Evans AC (1999) Structural maturation of neural pathways in children and adolescents: in vivo study. Science 283(5409):1908–1911

    Article  CAS  PubMed  Google Scholar 

  50. Peiffer AM, Friedman JT, Rosen GD, Fitch RH (2004) Impaired gap detection in juvenile microgyric rats. Dev Brain Res 152(2):93–98

    Article  CAS  Google Scholar 

  51. Pereira LO, Arteni NS, Petersen RC, da Rocha AP, Achaval M, Netto CA (2007) Effects of daily environmental enrichment on memory deficits and brain injury following neonatal hypoxia-ischemia in the rat. Neurobiol Learn Mem 87(1):101–108

    Article  PubMed  Google Scholar 

  52. Raz S, Lauterbach MD, Hopkins TL, Glogowski BK, Porter CL, Riggs WW, Sander CJ (1995) A female advantage in cognitive recovery from early cerebral insult. Dev Psychol 31(6):958–966

    Article  Google Scholar 

  53. Rice D, Barone SJ (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108(3):511–533

    Article  PubMed Central  PubMed  Google Scholar 

  54. Rice JE, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9(2):131–141

    Article  PubMed  Google Scholar 

  55. Roberge M, Messier C, Staines WA, Plamondon H (2008) Food restriction induces long-lasting recovery of spatial memory deficits following global ischemia in delayed matching and non-matching-to-sample radial arm maze tasks. Neuroscience 156(1):11–29

    Article  CAS  PubMed  Google Scholar 

  56. Roberge M, Hotte-Bernard J, Messier C, Plamondon H (2008) Food restriction attenuates ischemia-induced spatial learning and memory deficits despite extensive CA1 ischemic injury. Behav Brain Res 187(1):123–132

    Article  CAS  PubMed  Google Scholar 

  57. Schrott LM, Waters NS, Boehm GW, Sherman GF, Morrison L, Rosen GD, Behan PO, Galaburda AM, Denenberg VH (1993) Behavior, cortical ectopias, and autoimmunity in BXSB-yaa and BXSB-yaa + mice. Brain Behav Immun 7(3):205–223

    Article  CAS  PubMed  Google Scholar 

  58. Smith AL, Hill CA, Alexander ML, Chrobak JJ, Fitch RH (2011) Effects of neonatal hypoxic ischemic brain injury on spatial working memory. Society for Neuroscience poster

    Google Scholar 

  59. Smith-Spark J (2007) Working memory functioning in developmental dyslexia. Memory 15(1):34–56

    Article  PubMed  Google Scholar 

  60. Stiles J, Bates EA, Thal D, Trauner DA, Reilly J (2002) Linguistic and spatial cognitive development in children with pre- and perinatal focal brain injury: a ten-year overview from the San Diego longitudinal project. In: Brain Development and Cognition. Blackwell Publishers Ltd, Oxford, pp 272–291. doi:10.1002/9780470753507.ch15

    Google Scholar 

  61. Szalkowski CE, Booker AB, Truong DT, Rosen GD, Fitch RH (2013) Knockdown of the candidate dyslexia susceptibility gene homolog Dyx1c1 in rodents: effects on rapid and complex auditory processing, visual attention, and cortical and thalamic anatomy. Dev Neurosci 35(1):50–68

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Szalkowski CE, Hinman JR, Threlkeld SW, Wang Y, LePack A, Rosen GD, Chrobak JJ, LoTurco JJ, Fitch RH (2011) Persistent spatial working memory deficits in rats following in utero RNAi of Dyx1c1. Genes Brain Behav 10(2):244–252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Szalkowski CE, Fiondella CG, Galaburda AM, Rosen GD, LoTurco JJ, Fitch RH (2012) Neocortical disruption and behavioral impairments in rats following in utero RNAi of candidate dyslexia risk gene Kiaa0319. Int J Dev Neurosci 30(4):293–302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Szuran T, Zimmermann E, Welzl H (1994) Water maze performance and hippocampal weight of prenatally stressed rats. Behav Brain Res 65(2):153–155

    Article  CAS  PubMed  Google Scholar 

  65. Szuran TF, Pliška V, Pokorny J, Welzl H (2000) Prenatal stress in rats: effects on plasma corticosterone, hippocampal glucocorticoid receptors, and maze performance. Physiol Behav 71(3–4):353–362

    Article  CAS  PubMed  Google Scholar 

  66. Threlkeld SW, Hill CA, Rosen GD, Fitch RH (2009) Early acoustic discrimination experience ameliorates auditory processing deficits in male rats with cortical developmental disruption. Int J Dev Neurosci 27(4):321–328

    Article  PubMed Central  PubMed  Google Scholar 

  67. Threlkeld SW, Hill CA, Szalkowski CE, Truong DT, Rosen GD, Fitch RH (2012) Effects of test experience and neocortical microgyria on spatial and non-spatial learning in rats. Behav Brain Res 235(2):130–135

    Article  PubMed Central  PubMed  Google Scholar 

  68. Threlkeld SW, McClure MM, Bai J, Wang Y, LoTurco JJ, Rosen GD, Fitch RH (2007) Developmental disruptions and behavioral impairments in rats following in utero RNAi of Dyx1c1. Brain Res Bull 71(5):508–514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Threlkeld SW, McClure MM, Rosen GD, Fitch RH (2006) Developmental timeframes for induction of microgyria and rapid auditory processing deficits in the rat. Brain Res 1109(1):22–31

    Article  CAS  PubMed  Google Scholar 

  70. Truong DT, Che A, Rendall AR, Szalkowski CE, LoTurco JJ, Galaburda AM, Fitch RH (2014) Mutation of Dcdc2 in mice leads to impairments in auditory processing and memory ability. Genes Brain Behav. doi: 10.1111/gbb.12170

  71. Truong DT, Bonet A, Rendall AR, Rosen GD, Fitch RH (2013) A behavioral evaluation of sex differences in a mouse model of severe neuronal migration disorder PLoS One 8(9):e73144

    Google Scholar 

  72. Truong DT, Venna VR, McCullough LD, Fitch RH (2012) Deficits in auditory, cognitive, and motor processing following reversible middle cerebral artery occlusion in mice. Exp Neurol 238(2):114–121

    Article  PubMed  Google Scholar 

  73. Tu YF, Lu PJ, Huang CC, Ho CJ, Chou YP (2012) Moderate dietary restriction reduces p53-mediated neurovascular damage and microglia activation after hypoxicischemia in neonatal brain. Stroke 43(2):491–498

    Article  CAS  PubMed  Google Scholar 

  74. Tu YF, Tsai YS, Wang LW, Wu HC, Huang CC, Ho CJ (2011) Overweight worsens apoptosis, neuroinflammation and blood-brain barrier damage after hypoxic ischemia inneonatal brain through JNK hyperactivation. J Neuroinflammation 8:40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7(8):847–854

    Article  CAS  PubMed  Google Scholar 

  76. Webb SJ, Monk CS, Nelson CA (2001) Mechanisms of postnatal neurobiological development: implications for human development. Dev Neuropsychol 19(2):147

    Article  CAS  PubMed  Google Scholar 

  77. White CL, Pistell PJ, Purpera MN, Gupta S, Fernandez-Kim S, Hise TL, Keller JN, Ingram DK, Morrison CD, Bruce-Keller AJ (2009) Effects of high fat diet on morris maze performance, oxidative stress, and inflammation in rats: contributions of maternal diet. Neurobiol Dis 35(1):3–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Workman AD, Charvet CJ, Clancy B, Darlington RB, Finlay BL (2013) Modeling transformations of neurodevelopmental sequences across mammalian species. J Neurosci 33:7368–7383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Further Reading

  • Bernal AJ, Jirtle RL (2010) Epigenomic disruption: the effects of early developmental exposures. Birth Defects Res A Clin Mol Teratol 88(10): 938–944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davidson M (1998) Experimental design: problems in understanding the dynamical behavior–environment system. Behav Anal 21(2):219–240

    Google Scholar 

  • Denenberg VH (2000) Evolution proposes and ontogeny disposes. Brain Lang 73(2):274–296

    Article  CAS  PubMed  Google Scholar 

  • Denenberg VH (1976) Statistics and experimental design for behavioral and biological researchers: an introduction. Hemisphere, Oxford

    Google Scholar 

  • Ehman KD, Moser VC (2006) Evaluation of cognitive function in weanling rats: a review of methods suitable for chemical screening. Neurotoxicol Teratol 28(1):144–161

    Article  CAS  PubMed  Google Scholar 

  • Galaburda AM, LoTurco J, Ramus F, Fitch RH, Rosen GD (2006) From genes to behavior in developmental dyslexia. Nat Neurosci 9(10): 1217

    Article  Google Scholar 

  • Kas MJ, Fernandes C, Schalkwyk LC, Collier DA (2007) Genetics of behavioural domains across the neuropsychiatric spectrum; of mice and men. Mol Psychiatry 12(4):324–330

    Article  CAS  PubMed  Google Scholar 

  • Marco EM, Macri S, Laviola G (2011) Critical age windows for neurodevelopmental psychiatric disorders: evidence from animal models. Neurotox Res 19(2):286–307

    Article  PubMed  Google Scholar 

  • Myers M (1991) Identifying relationships between early life experiences and adult traits. In: Shair HN, Barr GA, Hofer MA (eds) Developmental psychobiology: new methods and changing concepts. Oxford University Press, New York, NY, pp 5–18

    Google Scholar 

  • Ricceri L, Moles A, Crawley J (2007) Behavioral phenotyping of mouse models of neurodevelopmental disorders: relevant social behavior patterns across the life span. Behav Brain Res 176(1):40–52

    Article  PubMed  Google Scholar 

  • Ross S, Ginsburg BE, Denenberg VH (1957) The use of the split-litter technique in psychological research. Psychol Bull 54(2):145–151

    Article  CAS  PubMed  Google Scholar 

  • Roth TL, David Sweatt J (2011) Annual research review: epigenetic mechanisms and environmental shaping of the brain during sensitive periods of development. J Child Psychol Psychiatry 52(4):398–408

    Article  PubMed Central  PubMed  Google Scholar 

  • Rubenstein JLR (2011) Annual research review: development of the cerebral cortex: implications for neurodevelopmental disorders. J Child Psychol Psychiatry 52(4):339–355

    Article  PubMed Central  PubMed  Google Scholar 

  • Schneider ML, Moore CF, Adkins MM (2011) The effects of prenatal alcohol exposure on behavior: rodent and primate studies. Neuropsychol Rev 21(2):186–203

    Article  PubMed Central  PubMed  Google Scholar 

  • Smotherman W (1994) Caveats in the study of perinatal behavioral development: utility of fetal study. Neurosci Biobehav Rev 18(3):347–354

    Article  CAS  PubMed  Google Scholar 

  • Vorhees CV (1987) Reliability, sensitivity and validity of behavioral indices of neurotoxicity. Neurotoxicol Teratol 9(6):445–464

    Article  CAS  PubMed  Google Scholar 

  • Würbel H (2002) Behavioral phenotyping enhanced—beyond (environmental) standardization. Genes Brain Behav 1(1):3–8

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Holly Fitch Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Truong, D.T., Fitch, R.H. (2015). Behavioral Consequences of Early Disruption and Injury to the Developing Brain: Studying Rodent Models. In: Bimonte-Nelson, H. (eds) The Maze Book. Neuromethods, vol 94. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2159-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2159-1_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2158-4

  • Online ISBN: 978-1-4939-2159-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics