Skip to main content

Epistasis Analysis Using ReliefF

  • Protocol
  • First Online:
Epistasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1253))

Abstract

Here we introduce the ReliefF machine learning algorithm and some of its extensions for detecting and characterizing epistasis in genetic association studies. We provide a general overview of the method and then highlight some of the modifications that have greatly improved its power for genetic analysis. We end with a few examples of published studies of complex human diseases that have used ReliefF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore JH, Asselbergs FW, Williams SM (2010) Bioinformatics challenges for genome-wide association studies. Bioinformatics 26:445–455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. McKinney BA, Reif DM, Ritchie MD et al (2006) Machine learning for detecting gene-gene interactions: a review. Appl Bioinforma 5:77–88

    Article  CAS  Google Scholar 

  3. Cordell HJ (2009) Detecting gene-gene interactions that underlie human diseases. Nat Rev Genet 10:392–404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Hahn LW, Ritchie MD, Moore JH (2003) Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19:376–382

    Article  CAS  PubMed  Google Scholar 

  5. Ritchie MD, Hahn LW, Roodi N et al (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69:138–147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hahn LW, Moore JH (2004) Ideal discrimination of discrete clinical endpoints using multilocus genotypes. In Silico Biol 4:183–194

    CAS  PubMed  Google Scholar 

  7. Ritchie MD, Hahn LW, Moore JH (2003) Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet Epidemiol 24:150–157

    Article  PubMed  Google Scholar 

  8. Moore JH (2004) Computational analysis of gene-gene interactions using multifactor dimensionality reduction. Expert Rev Mol Diagn 4:795–803

    Article  CAS  PubMed  Google Scholar 

  9. Moore JH (2010) Detecting, characterizing, and interpreting nonlinear gene-gene interactions using multifactor dimensionality reduction. Adv Genet 72:101–116

    Article  PubMed  Google Scholar 

  10. Velez DR, White BC, Motsinger AA et al (2007) A balanced accuracy function for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction. Genet Epidemiol 31:306–315

    Article  PubMed  Google Scholar 

  11. Pattin KA, White BC, Barney N et al (2009) A computationally efficient hypothesis testing method for epistasis analysis using multifactor dimensionality reduction. Genet Epidemiol 33:87–94

    Article  PubMed Central  PubMed  Google Scholar 

  12. Moore JH (2007) Genome-wide analysis of epistasis using multifactor dimensionality reduction: feature selection and construction in the domain of human genetics. In: Zhu X, Davidson I (eds) Knowledge discovery and data mining: challenges and realities. IGI Global, Hershey, PA, pp 17–30

    Chapter  Google Scholar 

  13. Cordell HJ (2002) Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum Mol Genet 11:2463–2468

    Article  CAS  PubMed  Google Scholar 

  14. Phillips PC (2008) Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9:855–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Phillips PC (1998) The language of gene interaction. Genetics 149:1167–1171

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Moore JH (2003) The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum Hered 56:73–82

    Article  PubMed  Google Scholar 

  17. Moore JH, Williams SM (2005) Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. Bioessays 27:637–646

    Article  CAS  PubMed  Google Scholar 

  18. Moore JH (2005) A global view of epistasis. Nat Genet 37:13–14

    Article  CAS  PubMed  Google Scholar 

  19. Tyler AL, Asselbergs FW, Williams SM et al (2009) Shadows of complexity: what biological networks reveal about epistasis and pleiotropy. Bioessays 31:220–227

    Article  PubMed Central  PubMed  Google Scholar 

  20. Cowper-Sal lari R, Cole MD, Karagas MR et al (2011) Layers of epistasis: genome-wide regulatory networks and network approaches to genome-wide association studies, Wiley interdisciplinary reviews. Syst Biol Med 3:513–526

    CAS  Google Scholar 

  21. Moore JH, Williams SM (2009) Epistasis and its implications for personal genetics. Am J Hum Genet 85:309–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Bush WS, Dudek SM, Ritchie MD (2009) Biofilter: a knowledge-integration system for the multi-locus analysis of genome-wide association studies. Pacific symposium on biocomputing, pp 368–379

    Google Scholar 

  23. Pendergrass SA, Verma SS, Holzinger ER et al (2013) Next-generation analysis of cataracts: determining knowledge driven gene-gene interactions using Biofilter, and gene-environment interactions using the PhenX Toolkit. Pacific symposium on biocomputing, pp 147–158

    Google Scholar 

  24. Grady BJ, Torstenson ES, McLaren PJ et al (2011) Use of biological knowledge to inform the analysis of gene-gene interactions involved in modulating virologic failure with efavirenz-containing treatment regimens in ART-naïve ACTG clinical trials participants. Pacific symposium on biocomputing, pp 253–264

    Google Scholar 

  25. Kira K, Rendell LA (1992) A practical approach to feature selection. In: Proceedings of the ninth international workshop on machine learning, Morgan Kaufmann Publishers, San Francisco, CA, pp 249–256

    Google Scholar 

  26. Robnik-Šikonja M, Kononenko I (2003) Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn 53:23–69

    Article  Google Scholar 

  27. Kononenko I (1994) Estimating attributes: analysis and extensions of RELIEF. Lecture Notes in Computer Science 784:171–182

    Google Scholar 

  28. Demšar J, Curk T, Erjavec A et al (2013) Orange: data mining toolbox in python. J Mach Learn Res 14:2349–2353

    Google Scholar 

  29. Hall M, Frank E, Holmes G et al (2009) The WEKA data mining software: an update. SIGKDD Explor Newsl 11:10–18

    Article  Google Scholar 

  30. Moore JH, White BC (2007) Tuning ReliefF for genome-wide genetic analysis. In: Marchiori E, Moore JH, Rajapakse JC (eds) Evolutionary computation, machine learning and data mining in bioinformatics. Springer, Berlin, pp 166–175

    Chapter  Google Scholar 

  31. Hess HF (1986) Evaporative cooling of magnetically trapped and compressed spin-polarized hydrogen. Phys Rev B Condens Matter 34:3476–3479

    Article  CAS  PubMed  Google Scholar 

  32. McKinney BA, Reif DM, White BC et al (2007) Evaporative cooling feature selection for genotypic data involving interactions. Bioinformatics 23:2113–2120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. McKinney BA, Reif DM, Rock MT et al (2006) Cytokine expression patterns associated with systemic adverse events following smallpox immunization. J Infect Dis 194:444–453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Eppstein MJ, Payne JL, White BC et al (2007) Genomic mining for complex disease traits with “random chemistry”. Genet Program Evolvable Mach 8:395–411

    Article  Google Scholar 

  35. Greene CS, Penrod NM, Kiralis J et al (2009) Spatially uniform relieff (SURF) for computationally-efficient filtering of gene-gene interactions. BioData Min 2:5

    Article  PubMed Central  PubMed  Google Scholar 

  36. Greene CS, Himmelstein DS, Kiralis J et al (2010) The informative extremes: using both nearest and farthest individuals can improve relief algorithms in the domain of human genetics. In: Pizzuti C, Ritchie MD, Giacobini M (eds) Evolutionary computation, machine learning and data mining in bioinformatics. Springer, Berlin, pp 182–193

    Chapter  Google Scholar 

  37. Granizo-Mackenzie D, Moore JH (2013) Multiple threshold spatially uniform ReliefF for the genetic analysis of complex human diseases. In: Vanneschi L, Bush WS, Giacobini M (eds) Evolutionary computation, machine learning and data mining in bioinformatics. Springer, Berlin, pp 1–10

    Chapter  Google Scholar 

  38. Stokes ME, Visweswaran S (2012) Application of a spatially-weighted Relief algorithm for ranking genetic predictors of disease. BioData Min 5:20

    Article  PubMed Central  PubMed  Google Scholar 

  39. Andrew AS, Nelson HH, Kelsey KT et al (2006) Concordance of multiple analytical approaches demonstrates a complex relationship between DNA repair gene SNPs, smoking and bladder cancer susceptibility. Carcinogenesis 27:1030–1037

    Article  CAS  PubMed  Google Scholar 

  40. Urbanowicz RJ, Andrew AS, Karagas MR et al (2013) Role of genetic heterogeneity and epistasis in bladder cancer susceptibility and outcome: a learning classifier system approach. J Am Med Inform Assoc 20:603–612

    Article  PubMed Central  PubMed  Google Scholar 

  41. Collins RL, Hu T, Wejse C et al (2013) Multifactor dimensionality reduction reveals a three-locus epistatic interaction associated with susceptibility to pulmonary tuberculosis. BioData Min 6:4

    Article  PubMed Central  PubMed  Google Scholar 

  42. Olesen R, Wejse C, Velez DR et al (2007) DC-SIGN (CD209), pentraxin 3 and vitamin D receptor gene variants associate with pulmonary tuberculosis risk in West Africans. Genes Immun 8:456–467

    Article  CAS  PubMed  Google Scholar 

  43. Greene CS, Himmelstein DS, Nelson HH et al (2010) Enabling personal genomics with an explicit test of epistasis. Pacific symposium on biocomputing, pp 327–336

    Google Scholar 

  44. Hu T, Chen Y, Kiralis JW et al (2013) An information-gain approach to detecting three-way epistatic interactions in genetic association studies. J Am Med Inform Assoc 20:630–636

    Article  PubMed Central  PubMed  Google Scholar 

  45. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Urbanowicz RJ, Kiralis J, Sinnott-Armstrong NA et al (2012) GAMETES: a fast, direct algorithm for generating pure, strict, epistatic models with random architectures. BioData Min 5:16

    Article  PubMed Central  PubMed  Google Scholar 

  47. Urbanowicz RJ, Kiralis J, Fisher JM et al (2012) Predicting the difficulty of pure, strict, epistatic models: metrics for simulated model selection. BioData Min 5:15

    Article  PubMed Central  PubMed  Google Scholar 

  48. Edwards TL, Bush WS, Turner SD et al (2008) Generating linkage disequilibrium patterns in data simulations using genomeSIMLA. In: Proceedings of the 6th European conference on evolutionary computation, machine learning and data mining in bioinformatics, Springer, Berlin, pp 24–35

    Google Scholar 

  49. Ritchie MD, Bush WS (2010) Genome simulation approaches for synthesizing in silico datasets for human genomics. Adv Genet 72:1–24

    Article  CAS  PubMed  Google Scholar 

  50. Dudek SM, Motsinger AA, Velez DR et al (2006) Data simulation software for whole-genome association and other studies in human genetics. Pacific symposium on biocomputing, pp 499–510

    Google Scholar 

  51. Moore JH, Hahn LW, Ritchie MD et al (2004) Routine discovery of complex genetic models using genetic algorithms. Appl Soft Comput 4:79–86

    Article  PubMed Central  PubMed  Google Scholar 

  52. Himmelstein DS, Greene CS, Moore JH (2011) Evolving hard problems: generating human genetics datasets with a complex etiology. BioData Min 4:21

    Article  PubMed Central  PubMed  Google Scholar 

  53. Dai H, Bhandary M, Becker M et al (2012) Global tests of P-values for multifactor dimensionality reduction models in selection of optimal number of target genes. BioData Min 5:3

    Article  PubMed Central  PubMed  Google Scholar 

  54. Greene CS, Hill DP, Moore JH (2010) Environmental sensing of expert knowledge in a computational evolution system for complex problem solving in human genetics. In: Riolo R, O’Reilly U-M, McConaghy T (eds) Genetic programming theory and practice, vol VII. Springer, Ann Arbor, MI, pp 19–36

    Google Scholar 

  55. Moore JH, Andrews PC, Barney N et al (2008) Development and evaluation of an open-ended computational evolution system for the genetic analysis of susceptibility to common human diseases. In: Marchiori E, Moore JH (eds) Evolutionary computation, machine learning and data mining in bioinformatics. Springer, Berlin, pp 129–140

    Chapter  Google Scholar 

  56. Moore JH, Greene CS, Andrews PC et al (2009) Does complexity matter? artificial evolution, computational evolution and the genetic analysis of epistasis in common human diseases. In: Genetic programming theory and practice, vol VI. Springer, pp 1–19

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health (NIH) grants AI59694, EY022300, GM103534, GM103506, LM009012, LM010098, and LM011360.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason H. Moore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Moore, J.H. (2015). Epistasis Analysis Using ReliefF. In: Moore, J., Williams, S. (eds) Epistasis. Methods in Molecular Biology, vol 1253. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2155-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2155-3_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2154-6

  • Online ISBN: 978-1-4939-2155-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics