Skip to main content

Genome-Wide Epistasis and Pleiotropy Characterized by the Bipartite Human Phenotype Network

  • Protocol
  • First Online:
Book cover Epistasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1253))

Abstract

Networks are central to turning the colossal amount of information generated by high-throughput genetic technology into manageable sources of knowledge. They are an intuitive way of representing interaction data, yet they offer a full set of sophisticated quantitative tools to analyze the phenomena they model. When combining genetic information, diseases, and phenotypic traits, networks can reveal and facilitate the analysis of pleiotropic and epistatic effects at the genome-wide scale. Genome-wide association study data is publicly available, and so are gene and pathway databases, and many more, making the global overview next to impossible. Networks allow information from these multiple sources to be encompassed. We use connections between the strata of the network to characterize pleiotropy and epistasis effects taking place between traits and biological pathways. The global graph-theory-based quantitative methods reveal that levels of pleiotropy and epistasis are in-line with theoretical expectations. The results of the magnified “glaucoma” region of the network confirm the existence of well-documented interactions, supported by overlapping genes and biological pathways and more obscure associations. They have the potential to generate new hypotheses for yet uncharacterized interactions. As the amount and complexity of genetic data increase, bipartite and, more generally, multipartite networks that combine human diseases and other physical attributes with layers of genetic information have the potential to become ubiquitous tools in the study of complex genetic, phenotypic interactions, and possibly improve personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bateson W (1907) Facts limiting the theory of heredity. Science 26(672):649–660

    Article  CAS  PubMed  Google Scholar 

  2. Plate L (1910) Vererbungslehre und deszendenztheorie. Festschrift für R Hertwig II:537–610

    Google Scholar 

  3. Stearns FW (2010) One hundred years of pleiotropy: a retrospective. Genetics 186(3):767–773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Gruneberg H (1938) An analysis of the “pleiotropic” effects of a new lethal mutation in the rat (Mus norvegicus). Proc R Soc Lond B Biol Sci 125(838):123–144

    Article  Google Scholar 

  5. Hodgkin J (1998) Seven types of pleiotropy. Int J Dev Biol 42(3):501–505

    CAS  PubMed  Google Scholar 

  6. Anthony JF Griffiths, Jeffrey H Miller, David T Suzuki, Richard C Lewontin, and William M Gelbart. Introduction to Genetic Analysis. 7th edition. W. H. Freeman, 2000

    Google Scholar 

  7. Moore JH (2003) The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum Hered 56(1–3):73–82

    Article  PubMed  Google Scholar 

  8. Tyler AL, Asselbergs FW, Williams SM, Moore JH (2009) Shadows of complexity: what biological networks reveal about epistasis and pleiotropy. Bioessays 31(2):220–227

    Article  PubMed Central  PubMed  Google Scholar 

  9. Newman M (2010) Networks: an introduction. Oxford University Press, Inc., New York, NY

    Book  Google Scholar 

  10. Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393:440–442

    Article  CAS  PubMed  Google Scholar 

  11. Zhou T, Ren J, Medo M, Zhang Y-C (2007) Bipartite network projection and personal recommendation. Phys Rev E 76:046115

    Article  Google Scholar 

  12. Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabasi A-L (2007) The human disease network. Proc Natl Acad Sci 104(21):8685–8690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Li H, Lee Y, Chen JL, Rebman E, Li J, Lussier YA (2012) Complex-disease networks of trait-associated single-nucleotide polymorphisms (SNPs) unveiled by information theory. J Am Med Inform Assoc 19(2):295–305

    Article  PubMed Central  PubMed  Google Scholar 

  14. Suthram S, Dudley JT, Chiang AP, Chen R, Hastie TJ, Butte AJ (2010) Network-based elucidation of human disease similarities reveals common functional modules enriched for pluripotent drug targets. PLoS Comput Biol 6(2):e1000662

    Article  PubMed Central  PubMed  Google Scholar 

  15. Barrenas F, Chavali S, Holme P, Mobini R, Benson M (2009) Network properties of complex human disease genes identified through genome-wide association studies. PLoS One 4(11):e8090

    Article  PubMed Central  PubMed  Google Scholar 

  16. Schilling CH, Schuster S, Palsson BO, Heinrich R (1999) Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnol Prog 15(3):296–303

    Article  CAS  PubMed  Google Scholar 

  17. Darabos C, Desai K, Cowper-Sal-lari R, Giacobini M, Lupien M, Moore JH. Inferring human phenotype networks from genome-wide genetic associations. In Giacobini M, Vanneschi L, Bush WS (eds.), Evolutionary computation, machine learning and data mining in bioinformatics—11th European Conference, EvoBIO 2013, Vienna, Austria, April 3–5, 2013. Proceedings, Lecture Notes in Computer Science. Springer, to appear, 2013

    Google Scholar 

  18. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106(23):9362–9367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Featherstone DE, Broadie K (2002) Wrestling with pleiotropy: genomic and topological analysis of the yeast gene expression network. Bioessays 24(3):267–274

    Article  CAS  PubMed  Google Scholar 

  20. Li R, Tsaih S-W, Shockley K, Ioannis M, Stylianou JW, Paigen B, Churchill GA (2006) Structural model analysis of multiple quantitative traits. PLoS Genet 2(7):e114

    Article  PubMed Central  PubMed  Google Scholar 

  21. Welch JJ, Waxman D (2003) Modularity and the cost of complexity. Evolution 57(8):1723–1734

    Article  PubMed  Google Scholar 

  22. Darabos C, White MJ, Graham BE, Leung DN, Williams S, Moore JH (2014) The multiscale backbone of the human phenotype network based on biological pathways. BioData Min 7(1):1

    Article  PubMed Central  PubMed  Google Scholar 

  23. Chae B, Cakiner-Egilmez T, Desai M (2013) Glaucoma medications. Insight 38(1):5–9

    PubMed  Google Scholar 

  24. He Z, Vingrys AJ, Armitage JA, Bui BV (2011) The role of blood pressure in glaucoma. Clin Exp Optom 94(2):133–149

    Article  PubMed  Google Scholar 

  25. Oswal KS, Sivaraj RR, Murray PI, Stavrou P (2013) Clinical course and visual outcome in patients with diabetes mellitus and uveitis. BMC Res Notes 6(1):167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Inoue T, Kawaji T, Tanihara H (2013) Elevated levels of multiple biomarkers of Alzheimer’s disease in the aqueous humor of eyes with open-angle glaucoma. Invest Ophthalmol Vis Sci 54(8):5353–8

    Article  CAS  PubMed  Google Scholar 

  27. Wang D, Huang Y, Huang C, Pengfei W, Lin J, Zheng Y, Peng Y, Liang Y, Chen J-H, Zhang M (2012) Association analysis of cigarette smoking with onset of primary open-angle glaucoma and glaucoma-related biometric parameters. BMC Ophthalmol 12:59

    Article  PubMed Central  PubMed  Google Scholar 

  28. Ghiso JA (2013) Alzheimer’s disease and glaucoma: mechanistic similarities and differences. J Glaucoma 22(Suppl 5):S36–S38

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health (NIH) grants R01 EY022300, LM009012, LM010098, AI59694.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason H. Moore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Darabos, C., Moore, J.H. (2015). Genome-Wide Epistasis and Pleiotropy Characterized by the Bipartite Human Phenotype Network. In: Moore, J., Williams, S. (eds) Epistasis. Methods in Molecular Biology, vol 1253. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2155-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2155-3_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2154-6

  • Online ISBN: 978-1-4939-2155-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics