Skip to main content

Compositional Epistasis: An Epidemiologic Perspective

  • Protocol
  • First Online:
Book cover Epistasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1253))

  • 2497 Accesses

Abstract

Under Bateson’s original conception, the term “epistasis” is used to describe the situation in which the effect of a genetic factor at one locus is masked by a variant at another locus. Epistasis in the sense of masking has been termed “compositional epistasis.” In general, statistical tests for interaction are of limited use in detecting compositional epistasis. Using recently developed epidemiological methods, however, it has been shown that there are relations between empirical data patterns and compositional epistasis. These relations can sometimes be exploited to empirically test for certain forms of compositional epistasis, by using alternative nonstandard tests for interaction.

Using the counterfactual framework, we show conditions that can be empirically tested to determine whether there are individuals whose phenotype response patterns manifest epistasis in the sense of masking. Only under some very strong assumptions would tests for standard statistical interactions correspond to compositional epistasis. Even without such strong assumptions, however, one can still test whether there are individuals of phenotype response type representing compositional epistasis. The empirical conditions are quite strong, but the conclusions which tests of these conditions allow may be of interest in a wide range of studies. This chapter highlights that epidemiologic perspectives can be used to shed light on underlying mechanisms at the genetic, molecular, and cellular levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bateson W (1909) Mendel’s principles of heredity. Cambridge University Press, Cambridge

    Google Scholar 

  2. Phillips PC (2008) Epistasis: the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9:855–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Moore JH, Williams SM (2009) Epistasis and its implications for personal genetics. Am J Hum Genet 85:309–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Cordell HJ (2009) Detecting gene-gene interactions that underlie human diseases. Nat Rev Genet 10:392–404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Steen KV (2012) Travelling the world of gene-gene interactions. Brief Bioinform 13:1–19

    Article  PubMed  Google Scholar 

  6. Cordell HJ (2002) Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum Mol Genet 11:2463–2468

    Article  CAS  PubMed  Google Scholar 

  7. Moore JH, Williams SM (2005) Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. BioEssays 27:637–646

    Article  CAS  PubMed  Google Scholar 

  8. Cordell HJ, Clayton DG (2005) Genetic association studies. Lancet 366:1121–1131

    Article  PubMed  Google Scholar 

  9. VanderWeele TJ (2010) Epistatic interactions. Stat Appl Genet Mol Biol 9:1. doi:10.2202/1544-6115.1517

    Google Scholar 

  10. VanderWeele TJ (2010) Empirical tests for compositional epistasis. Nat Rev Genet 11:166

    Article  PubMed Central  PubMed  Google Scholar 

  11. VanderWeele TJ, Laird NM (2011) Tests for compositional epistasis under single interaction-parameter models. Ann Hum Genet 75:146–156

    Article  PubMed Central  PubMed  Google Scholar 

  12. VanderWeele TJ, Knol MJ (2011) Remarks on antagonism. Am J Epidemiol 173:1140–1147

    Article  PubMed Central  PubMed  Google Scholar 

  13. Little RJ, Rubin DB (2000) Causal effects in clinical and epidemiological studies via potential outcomes: concepts and analytical approaches. Annu Rev Public Health 21:121–145

    Article  CAS  PubMed  Google Scholar 

  14. VanderWeele TJ, Hernán MA (2012) Causal effects and natural laws: towards a conceptualization of causal counterfactuals for nonmanipulable exposures, with application to the effects of race and sex. In: Berzuini C, Dawid P, Bernardinelli L (eds) Causality: statistical perspectives and applications. Wiley, Hoboken, NJ, pp 101–113

    Chapter  Google Scholar 

  15. Greenland S, Poole C (1988) Invariants and noninvariants in the concept of interdependent effects. Scand J Work Environ Health 14:125–129

    Article  CAS  PubMed  Google Scholar 

  16. Holland PW (1986) Statistics and causal inference. J Am Stat Assoc 81:945–960

    Article  Google Scholar 

  17. Pritchard JK, Rosenberg NA (1999) Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 65:220–228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet 67:170–181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

  20. Hoggart CJ, Parra EJ, Shriver MD, Bonilla C, Kittles RA, Clayton DG et al (2003) Control of confounding of genetic associations in stratified populations. Am J Hum Genet 72:1492–1504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Satten GA, Flanders WD, Yang Q (2001) Accounting for unmeasured population substructure in case-control studies of genetic association using a novel latent-class model. Am J Hum Genet 68:466–477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Greenland S, Morgenstern H (2001) Confounding in health research. Annu Rev Public Health 22:189–212

    Article  CAS  PubMed  Google Scholar 

  23. VanderWeele TJ, Robins JM (2007) The identification of synergism in the sufficient-component-cause framework. Epidemiology 18:329–339

    Article  PubMed  Google Scholar 

  24. Suzuki E, Yamamoto E, Tsuda T (2011) On the link between sufficient-cause model and potential-outcome model. Epidemiology 22:131–132

    Article  PubMed  Google Scholar 

  25. Rothman KJ (1986) Modern epidemiology. Little Brown and Company, Boston, MA

    Google Scholar 

  26. Richardson DB, Kaufman JS (2009) Estimation of the relative excess risk due to interaction and associated confidence bounds. Am J Epidemiol 169:756–760

    Article  PubMed Central  PubMed  Google Scholar 

  27. Rothman KJ (1976) Causes. Am J Epidemiol 104:587–592

    CAS  PubMed  Google Scholar 

  28. VanderWeele TJ, Robins JM (2008) Empirical and counterfactual conditions for sufficient cause interactions. Biometrika 95:49–61

    Article  Google Scholar 

  29. VanderWeele TJ (2012) Invited commentary: assessing mechanistic interaction between coinfecting pathogens for diarrheal disease. Am J Epidemiol 176:396–399

    Article  PubMed Central  PubMed  Google Scholar 

  30. Flanders WD (2006) On the relationship of sufficient component cause models with potential outcome (counterfactual) models. Eur J Epidemiol 21:847–853

    Article  PubMed  Google Scholar 

  31. VanderWeele TJ, Hernán MA (2006) From counterfactuals to sufficient component causes and vice versa. Eur J Epidemiol 21:855–858

    Article  PubMed  Google Scholar 

  32. VanderWeele TJ (2011) A word and that to which it once referred: assessing “biologic” interaction. Epidemiology 22:612–613

    Article  PubMed  Google Scholar 

  33. VanderWeele TJ (2010) Sufficient cause interactions for categorical and ordinal exposures with three levels. Biometrika 97:647–659

    Article  PubMed Central  PubMed  Google Scholar 

  34. VanderWeele TJ (2009) Sufficient cause interactions and statistical interactions. Epidemiology 20:6–13

    Article  PubMed  Google Scholar 

  35. Vansteelandt S, VanderWeele TJ, Robins JM (2008) Multiply robust inference for statistical interactions. J Am Stat Assoc 103:1693–1704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Vansteelandt S, VanderWeele TJ, Robins JM (2012) Semiparametric tests for sufficient cause interaction. J Roy Stat Soc B 74:223–244

    Article  Google Scholar 

  37. VanderWeele TJ, Vansteelandt S (2011) A weighting approach to causal effects and additive interaction in case-control studies: marginal structural linear odds models. Am J Epidemiol 174:1197–1203

    Article  PubMed Central  PubMed  Google Scholar 

  38. VanderWeele TJ, Vansteelandt S, Robins JM (2010) Marginal structural models for sufficient cause interactions. Am J Epidemiol 171:506–514

    Article  PubMed Central  PubMed  Google Scholar 

  39. Vansteelandt S, Lange C (2012) Causation and causal inference for genetic effects. Hum Genet 131:1665–1676

    Article  PubMed  Google Scholar 

  40. Suzuki E, Yamamoto E, Tsuda T (2012) On the relations between excess fraction, attributable fraction, and etiologic fraction. Am J Epidemiol 175:567–575

    Article  PubMed  Google Scholar 

  41. Hafeman DM (2008) A sufficient cause based approach to the assessment of mediation. Eur J Epidemiol 23:711–721

    Article  PubMed  Google Scholar 

  42. VanderWeele TJ (2009) Mediation and mechanism. Eur J Epidemiol 24:217–224

    Article  PubMed  Google Scholar 

  43. Suzuki E, Yamamoto E, Tsuda T (2011) Identification of operating mediation and mechanism in the sufficient-component cause framework. Eur J Epidemiol 26:347–357

    Article  PubMed  Google Scholar 

  44. VanderWeele TJ, Asomaning K, Tchetgen Tchetgen EJ, Han Y, Spitz MR, Shete S et al (2012) Genetic variants on 15q25.1, smoking, and lung cancer: an assessment of mediation and interaction. Am J Epidemiol 175:1013–1020

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etsuji Suzuki .

Editor information

Editors and Affiliations

Appendix Table Potential Phenotype Patterns Under the Assumption of Positive Monotonicity of both V 1 and V 2 on D

Appendix Table Potential Phenotype Patterns Under the Assumption of Positive Monotonicity of both V 1 and V 2 on D

 

Genotype at locus B

Genotype at locus A

b/b

b/B

B/B

A

a/a

0

0

0

a/A

0

0

0

A/A

0

0

1

B

a/a

0

0

0

a/A

0

0

1

A/A

0

0

1

C

a/a

0

0

0

a/A

0

0

0

A/A

0

1

1

D

a/a

0

0

0

a/A

0

1

1

A/A

0

1

1

E

a/a

0

0

1

a/A

0

0

1

A/A

0

0

1

F

a/a

0

0

0

a/A

0

0

0

A/A

1

1

1

G

a/a

0

0

1

a/A

0

1

1

A/A

0

1

1

H

a/a

0

1

1

a/A

0

1

1

A/A

0

1

1

I

a/a

0

0

0

a/A

0

1

1

A/A

1

1

1

J

a/a

0

0

1

a/A

0

1

1

A/A

1

1

1

K

a/a

0

1

1

a/A

0

1

1

A/A

1

1

1

L

a/a

0

0

0

a/A

1

1

1

A/A

1

1

1

M

a/a

0

0

1

a/A

1

1

1

A/A

1

1

1

N

a/a

0

1

1

a/A

1

1

1

A/A

1

1

1

O

a/a

0

0

0

a/A

0

0

1

A/A

0

1

1

P

a/a

0

0

1

a/A

0

0

1

A/A

0

1

1

Q

a/a

0

0

0

a/A

0

0

1

A/A

1

1

1

R

a/a

0

0

1

a/A

0

0

1

A/A

1

1

1

  1. Both loci A and B are epistatic in the phenotype patterns A, B, C, D, J, K, M, N, O, and R
  2. Locus A is epistatic to locus B in the phenotype patterns I and Q
  3. Locus B is epistatic to locus A in the phenotype patterns G and P
  4. Neither locus A nor locus B is epistatic in the phenotype patterns E, F, H, and L

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Suzuki, E., VanderWeele, T.J. (2015). Compositional Epistasis: An Epidemiologic Perspective. In: Moore, J., Williams, S. (eds) Epistasis. Methods in Molecular Biology, vol 1253. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2155-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2155-3_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2154-6

  • Online ISBN: 978-1-4939-2155-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics