Skip to main content

Bone Marrow Transplantation for Research and Regenerative Therapies in the Central Nervous System

  • Protocol
  • First Online:
Neuronal Cell Death

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1254))

Abstract

Bone marrow stem cells are probably the best known stem cell type and have been employed for more than 50 years, especially in pathologies related to the hematopoietic and immune systems. However, their potential for therapeutic application is much broader (because these cells can differentiate into hepatocytes , myocytes , cardiomyocytes , pneumocytes or neural cells , among others), and they can also presumably be employed to palliate neural diseases . Current research addressing the integration of bone marrow -derived cells in the neural circuits of the central nervous system together with their features and applications are hotspots in current Neurobiology. Nevertheless, as in other leading research lines the efficacy and possibilities of their therapeutic application depend on the technical procedures employed, which are still far from being standardized. In this chapter we shall explain one of these procedures in depth, namely the transplantation of whole bone marrow from harvested bone marrow stem cells for subsequent integration into the encephalon .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Becker AJ, McCulloch EA, Till JE (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452–454

    Article  CAS  PubMed  Google Scholar 

  2. Krause DS, Theise ND, Collector MI et al (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377

    Article  CAS  PubMed  Google Scholar 

  3. Eglitis MA, Mezey E (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci U S A 94:4080–4085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Brazelton TR, Rossi FM, Keshet GI et al (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290:1775–1779

    Article  CAS  PubMed  Google Scholar 

  5. Mezey E, Chandross KJ, Harta G et al (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290:1779–1782

    Article  CAS  PubMed  Google Scholar 

  6. Thomas ED (1983) Bone marrow transplantation in leukemia. Haematol Blood Transfus 28:11–15

    CAS  PubMed  Google Scholar 

  7. Thomas ED (1983) Bone marrow transplantation. A lifesaving applied art. An interview with E. Donnall Thomas, MD. JAMA 249:2528–2536

    Article  CAS  PubMed  Google Scholar 

  8. Tögel F, Westenfelder C (2007) Adult bone marrow-derived stem cells for organ regeneration and repair. Dev Dyn 236:3321–3331

    Article  PubMed  Google Scholar 

  9. Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116:769–778

    Article  CAS  PubMed  Google Scholar 

  10. Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21:605–631

    Article  CAS  PubMed  Google Scholar 

  11. Johansson CB, Youssef S, Koleckar K et al (2008) Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nat Cell Biol 10:575–583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Álvarez-Dolado M, Pardal R, García-Verdugo JM et al (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425:968–973

    Article  PubMed  Google Scholar 

  13. Díaz D, Recio JS, Baltanás FC et al (2011) Long-lasting changes in the anatomy of the olfactory bulb after ionizing irradiation and bone marrow transplantation. Neuroscience 173:190–205

    Article  PubMed  Google Scholar 

  14. Recio JS, Álvarez-Dolado M, Díaz D et al (2011) Bone marrow contributes simultaneously to different neural types in the central nervous system through different mechanisms of plasticity. Cell Transplant 20:1179–1192

    Article  PubMed  Google Scholar 

  15. Díaz D, Lepousez G, Gheusi G et al (2012) Bone marrow cell transplantation restores olfaction in the degenerated olfactory bulb. J Neurosci 32:9053–9058

    Article  PubMed  Google Scholar 

  16. Díaz D, Recio JS, Weruaga E et al (2012) Mild cerebellar neurodegeneration of aged heterozygous PCD mice increases cell fusion of Purkinje and bone marrow-derived cells. Cell Transplant 21:1595–1602

    Article  PubMed  Google Scholar 

  17. Piquer-Gil M, García-Verdugo JM, Zipancic I et al (2009) Cell fusion contributes to pericyte formation after stroke. J Cereb Blood Flow Metab 29:480–485

    Article  CAS  PubMed  Google Scholar 

  18. Espejel S, Romero R, Álvarez-Buylla A (2009) Radiation damage increases Purkinje neuron heterokaryons in neonatal cerebellum. Ann Neurol 66:100–109

    Article  PubMed  Google Scholar 

  19. Massengale M, Wagers AJ, Vogel H et al (2005) Hematopoietic cells maintain hematopoietic fates upon entering the brain. J Exp Med 201:1579–1589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Nygren JM, Liuba K, Breitbach M et al (2008) Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion. Nat Cell Biol 10:584–592

    Article  CAS  PubMed  Google Scholar 

  21. Corti S, Locatelli F, Strazzer S et al (2002) Modulated generation of neuronal cells from bone marrow by expansion and mobilization of circulating stem cells with in vivo cytokine treatment. Exp Neurol 177:443–452

    Article  CAS  PubMed  Google Scholar 

  22. Corti S, Locatelli F, Donadoni C et al (2004) Wild-type bone marrow cells ameliorate the phenotype of SOD1-G93A ALS mice and contribute to CNS, heart and skeletal muscle tissues. Brain 127:2518–2532

    Article  PubMed  Google Scholar 

  23. Priller J, Persons DA, Klett FF et al (2001) Neogenesis of cerebellar Purkinje neurons from gene-marked bone marrow cells in vivo. J Cell Biol 155:733–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kemp K, Gordon D, Wraith DC et al (2011) Fusion between human mesenchymal stem cells and rodent cerebellar Purkinje cells. Neuropathol Appl Neurobiol 37:166–178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Vallieres L, Sawchenko PE (2003) Bone marrow-derived cells that populate the adult mouse brain preserve their hematopoietic identity. J Neurosci 23:5197–5207

    CAS  PubMed  Google Scholar 

  26. Weimann JM, Johansson CB, Trejo A et al (2003) Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol 5:959–966

    Article  CAS  PubMed  Google Scholar 

  27. Magrassi L, Grimaldi P, Ibatici A et al (2007) Induction and survival of binucleated Purkinje neurons by selective damage and aging. J Neurosci 27:9885–9892

    Article  CAS  PubMed  Google Scholar 

  28. Nern C, Wolff I, Macas J et al (2009) Fusion of hematopoietic cells with Purkinje neurons does not lead to stable heterokaryon formation under noninvasive conditions. J Neurosci 29:3799–3807

    Article  CAS  PubMed  Google Scholar 

  29. Chen KA, Cruz PE, Lanuto DJ et al (2011) Cellular fusion for gene delivery to SCA1 affected Purkinje neurons. Mol Cell Neurosci 47:61–70

    Article  PubMed Central  PubMed  Google Scholar 

  30. Tada E, Yang C, Gobbel GT et al (1999) Long-term impairment of subependymal repopulation following damage by ionizing irradiation. Exp Neurol 160:66–77

    Article  CAS  PubMed  Google Scholar 

  31. Wiersema A, Dijk F, Dontje B et al (2007) Cerebellar heterokaryon formation increases with age and after irradiation. Stem Cell Res 1:150–154

    Article  PubMed  Google Scholar 

  32. Pachter JS, de Vries HE, Fabry Z (2003) The blood-brain barrier and its role in immune privilege in the central nervous system. J Neuropathol Exp Neurol 62:593–604

    CAS  PubMed  Google Scholar 

  33. Yuan H, Gaber MW, Boyd K et al (2006) Effects of fractionated radiation on the brain vasculature in a murine model: blood-brain barrier permeability, astrocyte proliferation, and ultrastructural changes. Int J Radiat Oncol Biol Phys 66:860–866

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministerio de Investigación y Ciencia (BFU2010-18284), Junta de Castilla y León and Centre for Regenerative Medicine and Cell Therapy of Castilla y León. The authors also express their gratitude to N. Skinner for revising the English version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ramón Alonso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Díaz, D., Alonso, J.R., Weruaga, E. (2015). Bone Marrow Transplantation for Research and Regenerative Therapies in the Central Nervous System. In: Lossi, L., Merighi, A. (eds) Neuronal Cell Death. Methods in Molecular Biology, vol 1254. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2152-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2152-2_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2151-5

  • Online ISBN: 978-1-4939-2152-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics