Skip to main content

Herpes Simplex Virus Type 1 (HSV-1 )-Derived Recombinant Vectors for Gene Transfer and Gene Therapy

  • Protocol
  • First Online:
Neuronal Cell Death

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1254))

Abstract

Herpes simplex virus type 1 (HSV-1 ) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153-kilobase pair (kbp) double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid , the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis . Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes the approach most commonly used to prepare recombinant HSV-1 vectors through homologous recombination , either in eukaryotic cells or in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roizman B, Knipe DM (2001) Herpes simplex viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology. Lippincot, Williams and Wilkins, Philadelphia, PA, pp 2399–2460

    Google Scholar 

  2. Marozin S, Prank U, Sodeik B (2004) Herpes simplex virus type 1 infection of polarized epithelial cells requires microtubules and access to receptors present at cell–cell contact sites. J Gen Virol 85:775–786

    Article  CAS  PubMed  Google Scholar 

  3. Honess RW, Roizman B (1975) Regulation of herpesvirus macromolecular synthesis: sequential transition of polypeptide synthesis requires functional viral polypeptides. Proc Natl Acad Sci U S A 72:1276–1280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Batterson W, Roizman B (1983) Characterization of the herpes simplex virion-associated factor responsible for the induction of alpha genes. J Virol 46:371–377

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Skepper JN, Whiteley A, Browne H et al (2001) Herpes simplex virus nucleocapsids mature to progeny virions by an envelopment → deenvelopment → reenvelopment pathway. J Virol 75:5697–5702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Deshmane SL, Fraser NW (1989) During latency, herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure. Virol 63:943–947

    CAS  Google Scholar 

  7. Farrell MJ, Dobson AT, Feldman LT (1991) Herpes simplex virus latency-associated transcript is a stable intron. Proc Natl Acad Sci U S A 88:790–794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Umbach JL, Kramer MF, Jurak I et al (2008) MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454:780–783

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Preston CM (2000) Repression of viral transcription during herpes simplex virus latency. J Gen Virol 8:1–19

    Google Scholar 

  10. Manservigi R, Argnani R, Marconi P et al (2007) Herpesvirus-based vectors for gene transfer, gene therapy, and the development of novel vaccines. In: Hefferon KL (ed) Virus expression vectors. Transworld Research Network, Kerala, India, pp 205–246

    Google Scholar 

  11. Krisky DM, Marconi PC, Oligino TJ et al (1998) Development of herpes simplex virus replication-defective multigene vectors for combination gene therapy applications. Gene Ther 5:1517–1530

    Article  CAS  PubMed  Google Scholar 

  12. Wu N, Watkins SC, Schaffer PA et al (1996) Prolonged gene expression and cell survival after infection by a herpes simplex virus mutant defective in the immediate-early genes encoding ICP4, ICP27, and ICP22. J Virol 70:6358–6369

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Samaniego LA, Neiderhiser L, DeLuca NA (1998) Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J Virol 72:3307–3320

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Berto E, Bozac A, Marconi P (2005) Development and application of replication-incompetent HSV-1-based vectors. Gene Ther 12(Suppl 1):S98–S102

    Article  CAS  PubMed  Google Scholar 

  15. Krisky DM, Wolfe D, Goins WF et al (1998) Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons. Gene Ther 5:1593–1603

    Article  CAS  PubMed  Google Scholar 

  16. Wolfe D, Mata M, Fink DJ (2009) A human trial of HSV-mediated gene transfer for the treatment of chronic pain. Gene Ther 16:455–460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Advani SJ, Weischelbaum RR, Whitley RJ et al (2002) Friendly fire: redirecting herpes simplex virus-1 for therapeutic applications. Clin Microbiol Infect 8:551–563

    Article  CAS  PubMed  Google Scholar 

  18. Argnani R, Lufino M, Manservigi M et al (2005) Replication-competent herpes simplex vectors: design and applications. Gene Ther 12(Suppl 1):S170–S177

    Article  CAS  PubMed  Google Scholar 

  19. Nawa A, Luo C, Zhang L et al (2008) Non-engineered, naturally oncolytic herpes simplex virus HSV1 HF-10: applications for cancer gene therapy. Curr Gene Ther 8:208–221

    Article  CAS  PubMed  Google Scholar 

  20. Gage PJ, Sauer B, Levine M et al (1992) A cell-free recombination system for site-specific integration of multigenic shuttle plasmids into the herpes simplex virus type 1 genome. J Virol 66:5509–5515

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Rinaldi A, Marshall KR, Preston CM (1999) A non-cytotoxic herpes simplex virus vector which expresses Cre recombinase directs efficient site-specific recombination. Virus Res 65:11–20

    Article  CAS  PubMed  Google Scholar 

  22. Stricklett PK, Nelson RD, Kohan DE (1998) Site-specific recombination using an epitope tagged bacteriophage P1 Cre recombinase. Gene 215:415–423

    Article  CAS  PubMed  Google Scholar 

  23. Krisky DM, Marconi PC, Oligino T et al (1997) Rapid method for construction of recombinant HSV gene transfer vectors. Gene Ther 4:1120–1125

    Article  CAS  PubMed  Google Scholar 

  24. Saeki Y, Ichikawa T, Saeki A et al (1998) Herpes simplex virus type 1 DNA amplified as bacterial artificial chromosome in Escherichia coli: rescue of replication-competent virus progeny and packaging of amplicon vectors. Human Gene Ther 9:2787–2794

    Article  CAS  Google Scholar 

  25. Tanaka M, Kagawa H, Yamanashi Y et al (2003) Construction of an excisable bacterial artificial chromosome containing a full-length infectious clone of herpes simplex virus type 1: viruses reconstituted from the clone exhibit wild-type properties in vitro and in vivo. J Virol 77:1382–1391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Warming S, Costantino N, Court DL et al (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33:e36

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto L. Epstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Marconi, P., Fraefel, C., Epstein, A.L. (2015). Herpes Simplex Virus Type 1 (HSV-1 )-Derived Recombinant Vectors for Gene Transfer and Gene Therapy . In: Lossi, L., Merighi, A. (eds) Neuronal Cell Death. Methods in Molecular Biology, vol 1254. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2152-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2152-2_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2151-5

  • Online ISBN: 978-1-4939-2152-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics