Skip to main content

Targeted Toxicants to Dopaminergic Neuronal Cell Death

  • Protocol
  • First Online:
Book cover Neuronal Cell Death

Abstract

Parkinson’s disease (PD ) is mainly characterized by a progressive degeneration of dopaminergic neurons in the substantia nigra resulting in chronic deficits in motor functions. Administration of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP ) produces PD symptoms and recapitulates the main features of PD in human and animal models . MPTP is converted to 1-methyl-4-phenylpyridine (MPP+ ), which is the active toxic compound that selectively destroys dopaminergic neurons. Here, we describe methods and protocols to evaluate MPTP/MPP+-induced dopaminergic neurodegeneration in both murine primary mesencephalic cultures and animal models. The ability of MPTP/MPP+ to cause dopaminergic neuronal cell death is assessed by immunostaining of tyrosine hydroxylase (TH ).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BSA:

Bovine serum albumin

HBSS:

Hank’s balanced salt solution

IACUC:

Institutional Animal Care and Use Committee

MPP:

1-Methyl-4-phenylpyridine

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

OCT:

Optimum cutting temperature

PBS:

Phosphate-buffered saline

PD:

Parkinson’s disease

PDL:

Poly-d-lysine

PFA:

Paraformaldehyde

SNc:

Substantia nigra pars compacta

TH:

Tyrosine hydroxylase

References

  1. Jankovic J (1988) Parkinson’s disease: recent advances in therapy. South Med J 81:1021–1027

    Article  CAS  PubMed  Google Scholar 

  2. Tanner CM (1992) Epidemiology of Parkinson’s disease. Neurol Clin 10:317–329

    CAS  PubMed  Google Scholar 

  3. Przedborski S, Jackson-Lewis V, Djaldetti R et al (2000) The parkinsonian toxin mptp: action and mechanism. Restor Neurol Neurosci 16:135–142

    CAS  PubMed  Google Scholar 

  4. Przedborski S, Dawson TM (2001) The role of nitric oxide in Parkinson’s disease. Meth Mol Med 62:113–136

    CAS  Google Scholar 

  5. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  CAS  PubMed  Google Scholar 

  6. Abou-Sleiman PM, Muqit MM, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7:207–219

    Article  CAS  PubMed  Google Scholar 

  7. Chaudhuri KR, Healy DG, Schapira AH (2006) Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 5:235–245

    Article  PubMed  Google Scholar 

  8. Magerkurth C, Schnitzer R, Braune S (2005) Symptoms of autonomic failure in Parkinson’s disease: prevalence and impact on daily life. Clin Auton Res 15:76–82

    Article  PubMed  Google Scholar 

  9. Olanow CW (2004) The scientific basis for the current treatment of Parkinson’s disease. Annu Rev Met 55:41–60

    Article  CAS  Google Scholar 

  10. Obeso JA, Rodriguez-Oroz MC, Goetz CG et al (2010) Missing pieces in the Parkinson’s disease puzzle. Nature Med 16:653–661

    Article  CAS  PubMed  Google Scholar 

  11. Carlsson A, Lindqvist M, Magnusson T (1957) 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180:1200

    Article  CAS  PubMed  Google Scholar 

  12. Lewitt PA (2008) Levodopa for the treatment of Parkinson’s disease. New Engl J Med 359:2468–2476

    Article  CAS  PubMed  Google Scholar 

  13. Manning-Bog AB, Langston JW (2007) Model fusion, the next phase in developing animal models for Parkinson’s disease. Neurotoxicity Res 11:219–240

    Article  CAS  Google Scholar 

  14. Jenner P (2008) Functional models of Parkinson’s disease: a valuable tool in the development of novel therapies. Ann Neurol 64(Suppl 2):S16–S29

    CAS  PubMed  Google Scholar 

  15. Langston JW, Ballard P, Tetrud JW et al (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    Article  CAS  PubMed  Google Scholar 

  16. Hartley A, Stone JM, Heron C et al (1994) Complex i inhibitors induce dose-dependent apoptosis in pc12 cells: relevance to Parkinson’s disease. J Neurochem 63:1987–1990

    Article  CAS  PubMed  Google Scholar 

  17. Schapira AH (1993) Mitochondrial complex i deficiency in Parkinson’s disease. Adv Neurol 60:288–291

    CAS  PubMed  Google Scholar 

  18. Ramsay RR, Salach JI, Dadgar J et al (1986) Inhibition of mitochondrial nadh dehydrogenase by pyridine derivatives and its possible relation to experimental and idiopathic parkinsonism. Biochem Biophys Res Commun 135:269–275

    Article  CAS  PubMed  Google Scholar 

  19. Schober A (2004) Classic toxin-induced animal models of Parkinson’s disease: 6-ohda and mptp. Cell Tiss Res 318:215–224

    Article  Google Scholar 

  20. Przedborski S, Jackson-Lewis V, Naini AB et al (2001) The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J Neurochem 76:1265–1274

    Article  CAS  PubMed  Google Scholar 

  21. McGeer PL, McGeer EG (2008) Glial reactions in Parkinson’s disease. Mov Disord 23:474–483

    Article  PubMed  Google Scholar 

  22. Jin H, Kanthasamy A, Ghosh A et al (2011) Alpha-synuclein negatively regulates protein kinase cdelta expression to suppress apoptosis in dopaminergic neurons by reducing p300 histone acetyltransferase activity. J Neurosci 31:2035–2051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Jin H, Kanthasamy A, Anantharam V et al (2011) Transcriptional regulation of pro-apoptotic protein kinase cdelta: implications for oxidative stress-induced neuronal cell death. J Biol Chem 286:19840–19859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kanthasamy AG, Anantharam V, Zhang D et al (2006) A novel peptide inhibitor targeted to caspase-3 cleavage site of a proapoptotic kinase protein kinase C delta (PKCdelta) protects against dopaminergic neuronal degeneration in Parkinson’s disease models. Free Radic Biol Med 41:1578–1589

    Article  CAS  PubMed  Google Scholar 

  25. Ghosh A, Chandran K, Kalivendi SV et al (2010) Neuroprotection by a mitochondria-targeted drug in a Parkinson’s disease model. Free Radical Biol Med 49:1674–1684

    Article  CAS  Google Scholar 

  26. Bayer SA, Wills KV, Triarhou LC et al (1995) Time of neuron origin and gradients of neurogenesis in midbrain dopaminergic neurons in the mouse. Exp Brain Res 105:191–199

    CAS  PubMed  Google Scholar 

  27. Ang SL (2006) Transcriptional control of midbrain dopaminergic neuron development. Development 133:3499–3506

    Article  CAS  PubMed  Google Scholar 

  28. Jonsson ME, Ono Y, Bjorklund A et al (2009) Identification of transplantable dopamine neuron precursors at different stages of midbrain neurogenesis. Exp Neurol 219:341–354

    Article  PubMed  Google Scholar 

  29. Takeshima T, Shimoda K, Johnston JM et al (1996) Standardized methods to bioassay neurotrophic factors for dopaminergic neurons. J Neurosci Meth 67:27–41

    Article  CAS  Google Scholar 

  30. Brewer GJ, Torricelli JR, Evege EK et al (1993) Optimized survival of hippocampal neurons in b27-supplemented neurobasal, a new serum-free medium combination. J Neurosci Res 35:567–576

    Article  CAS  PubMed  Google Scholar 

  31. Brewer GJ (1995) Serum-free b27/neurobasal medium supports differentiated growth of neurons from the striatum, substantia nigra, septum, cerebral cortex, cerebellum, and dentate gyrus. J Neurosci Res 42:674–683

    Article  CAS  PubMed  Google Scholar 

  32. Kittappa R, Chang WW, Awatramani RB et al (2007) The foxa2 gene controls the birth and spontaneous degeneration of dopamine neurons in old age. PLoS Biol 5:e325

    Article  PubMed Central  PubMed  Google Scholar 

  33. Blakely BD, Bye CR, Fernando CV et al (2011) Wnt5a regulates midbrain dopaminergic axon growth and guidance. PloS One 6:e18373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Szabo SE, Monroe SL, Fiorino S et al (2004) Evaluation of an automated instrument for viability and concentration measurements of cryopreserved hematopoietic cells. Lab Hematol 10:109–111

    Article  CAS  PubMed  Google Scholar 

  35. O’Malley EK, Black IB, Dreyfus CF (1991) Local support cells promote survival of substantia nigra dopaminergic neurons in culture. Exp Neurol 112:40–48

    Article  PubMed  Google Scholar 

  36. Liu B, Linley JE, Du X et al (2010) The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of m-type K+ channels and activation of Ca2+-activated Cl channels. J Clin Invest 120:1240–1252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Seroogy KB, Gall CM (1993) Expression of neurotrophins by midbrain dopaminergic neurons. Exp Neurol 124:119–128

    Article  CAS  PubMed  Google Scholar 

  38. Blesa J, Phani S, Jackson-Lewis V et al (2012) Classic and new animal models of Parkinson’s disease. J Biomed Biotechnol 2012:845618

    Article  PubMed Central  PubMed  Google Scholar 

  39. Ghosh A, Saminathan H, Kanthasamy A et al (2013) The peptidyl-prolyl isomerase Pin1 up-regulation and proapoptotic function in dopaminergic neurons: relevance to the pathogenesis of Parkinson disease. J Biol Chem 288:21955–21971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Heikkila RE, Hess A, Duvoisin RC (1984) Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine in mice. Science 224:1451–1453

    Article  CAS  PubMed  Google Scholar 

  41. Seniuk NA, Tatton WG, Greenwood CE (1990) Dose-dependent destruction of the coeruleus-cortical and nigral-striatal projections by MPTP. Brain Res 527:7–20

    Article  CAS  PubMed  Google Scholar 

  42. Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic, San Diego

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Institutes of Health grants, NS65167 and NS078237 to AK, and ES10586 and NS074443 to AGK. W. Eugene and Linda Lloyd Endowed Chair to AGK is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anumantha Kanthasamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jin, H., Kanthasamy, A., Harischandra, D.S., Anantharam, V., Rana, A., Kanthasamy, A. (2015). Targeted Toxicants to Dopaminergic Neuronal Cell Death. In: Lossi, L., Merighi, A. (eds) Neuronal Cell Death. Methods in Molecular Biology, vol 1254. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2152-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2152-2_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2151-5

  • Online ISBN: 978-1-4939-2152-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics