Skip to main content

Real-Time Imaging of Retinal Cell Apoptosis by Confocal Scanning Laser Ophthalmoscopy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1254))

Abstract

Retinal cell apoptosis occurs in many eye conditions, including glaucoma , diabetic retinopathy and Alzheimer’s disease. Real-time detection of retinal cell apoptosis has potential clinical value in early disease detection, as well as evaluating disease progression and treatment efficacy. Here, we describe our novel imaging technology DARC (Detection of Apoptosing Retinal Cells ), which can be used to visualize single retinal neurons undergoing apoptosis in real time, by using fluorescently labeled Annexin A5 and confocal scanning laser ophthalmoscopy (cSLO ). Clinical trials of DARC in glaucoma patients are due to start shortly, but in this chapter, we describe this technique in experimental animal models.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ascher MS, Sheppard HW, Krowka JF et al (1995) AIDS as immune system activation. Key questions that remain. Adv Exp Med Biol 374:203–210

    Article  CAS  PubMed  Google Scholar 

  2. Selleri C, Maciejewski JP, Sato T et al (1996) Interferon-gamma constitutively expressed in the stromal microenvironment of human marrow cultures mediates potent hematopoietic inhibition. Blood 87:4149–4157

    CAS  PubMed  Google Scholar 

  3. Raza A, Mundle S, Iftikhar A et al (1995) Simultaneous assessment of cell kinetics and programmed cell death in bone marrow biopsies of myelodysplastics reveals extensive apoptosis as the probable basis for ineffective hematopoiesis. Am J Hematol 48:143–154

    Article  CAS  PubMed  Google Scholar 

  4. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    Article  CAS  PubMed  Google Scholar 

  5. Shimizu A, Yamanaka N (1993) Apoptosis and cell desquamation in repair process of ischemic tubular necrosis. Virchows Arch B Cell Pathol Incl Mol Pathol 64:171–180

    Article  CAS  PubMed  Google Scholar 

  6. Gschwind M, Huber G (1995) Apoptotic cell death induced by beta-amyloid 1-42 peptide is cell type dependent. J Neurochem 65:292–300

    Article  CAS  PubMed  Google Scholar 

  7. Festoff BW (1996) Amyotrophic lateral sclerosis: current and future treatment strategies. Drugs 51:28–44

    Article  CAS  PubMed  Google Scholar 

  8. Walkinshaw G, Waters CM (1995) Induction of apoptosis in catecholaminergic PC12 cells by L-DOPA. Implications for the treatment of Parkinson’s disease. J Clin Invest 95:2458–2464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Portera-Cailliau C, Sung CH, Nathans J et al (1994) Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. Proc Natl Acad Sci U S A 91:974–978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Pollard H, Cantagrel S, Charriaut-Marlangue C et al (1994) Apoptosis associated DNA fragmentation in epileptic brain damage. Neuroreport 5:1053–1055

    Article  CAS  PubMed  Google Scholar 

  11. Reme CE, Grimm C, Hafezi F et al (1998) Apoptotic cell death in retinal degenerations. Prog Retin Eye Res 17:443–464

    Article  CAS  PubMed  Google Scholar 

  12. Raynal P, Pollard HB (1994) Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta 1197:63–93

    Article  CAS  PubMed  Google Scholar 

  13. Vermes I, Haanen C, Steffens-Nakken H et al (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184:39–51

    Article  CAS  PubMed  Google Scholar 

  14. Baskic D, Popovic S, Ristic P et al (2006) Analysis of cycloheximide-induced apoptosis in human leukocytes: fluorescence microscopy using annexin V/propidium iodide versus acridin orange/ethidium bromide. Cell Biol Int 30(11):924–932

    Article  CAS  PubMed  Google Scholar 

  15. Fadok VA, Bratton DL, Frasch SC et al (1998) The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ 5:551–562

    Article  CAS  PubMed  Google Scholar 

  16. Reutelingsperger CP, van Heerde WL (1997) Annexin V, the regulator of phosphatidylserine-catalyzed inflammation and coagulation during apoptosis. Cell Mol Life Sci 53:527–532

    Article  CAS  PubMed  Google Scholar 

  17. Coxon KM, Duggan J, Cordeiro MF et al (2011) Purification of annexin V and its use in the detection of apoptotic cells. Methods Mol Biol 731:293–308

    Article  CAS  PubMed  Google Scholar 

  18. Blankenberg FG, Tait J, Ohtsuki K et al (2000) Apoptosis: the importance of nuclear medicine. Nucl Med Commun 21:241–250

    Article  CAS  PubMed  Google Scholar 

  19. Cordeiro MF, Guo L, Luong V et al (2004) Real-time imaging of single nerve cell apoptosis in retinal neurodegeneration. Proc Natl Acad Sci U S A 101:13352–13356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Cordeiro MF, Guo L, Luong V et al (2010) Imaging multiple phases of neurodegeneration: a novel approach to assessing cell death in vivo. Cell Death Dis 1:e3. doi:10.1038/cddis.2009.3

  21. Webb RH, Hughes GW, Pomerantzeff O (1980) Flying spot TV ophthalmoscope. Appl Opt 19:2991–2997

    Article  CAS  PubMed  Google Scholar 

  22. Seth R, Gouras P (2004) Assessing macular pigment from SLO images. Doc Ophthalmol 108:197–202

    Article  PubMed  Google Scholar 

  23. Kernt M, Schaller UC, Stumpf C et al (2010) Choroidal pigmented lesions imaged by ultra-wide-field scanning laser ophthalmoscopy with two laser wavelengths (Optomap). Clin Ophthalmol 4:829–836

    Article  PubMed Central  PubMed  Google Scholar 

  24. Rudnicka AR, Burk RO, Edgar DF et al (1998) Magnification characteristics of fundus imaging systems. Ophthalmology 105:2186–2192

    Article  CAS  PubMed  Google Scholar 

  25. Eter N (2010) Molecular imaging in the eye. Br J Ophthalmol 94:1420–1426

    Article  PubMed  Google Scholar 

  26. Maass A, Lundh von Leithner P, Luong V et al (2007) Assessment of rat and mouse RGC apoptosis imaging in vivo with different scanning laser ophthalmoscopes. Curr Eye Res 32:851–861

    Article  PubMed Central  PubMed  Google Scholar 

  27. Hassenstein A, Meyer CH (2009) Clinical use and research applications of Heidelberg retinal angiography and spectral-domain optical coherence tomography—a review. Clin Experiment Ophthalmol 37:130–143

    Article  PubMed  Google Scholar 

  28. Hartwig A, Atchison DA (2012) Analysis of higher-order aberrations in a large clinical population. Invest Ophthalmol Vis Sci 53:7862–7870

    Article  PubMed  Google Scholar 

  29. Hecht E (1987) Optics/Eugene Hecht/with contributions by Alfred Zajac

    Google Scholar 

  30. Donnelly WJ 3rd, Roorda A (2003) Optimal pupil size in the human eye for axial resolution. J Opt Soc Am A Opt Image Sci Vis 20:2010–2015

    Article  PubMed  Google Scholar 

  31. Holz FG, Bellmann C, Rohrschneider K et al (1998) Simultaneous confocal scanning laser fluorescein and indocyanine green angiography. Am J Ophthalmol 125:227–236

    Article  CAS  PubMed  Google Scholar 

  32. Soliman AZ, Silva PS, Aiello LP et al (2012) Ultra-wide field retinal imaging in detection, classification, and management of diabetic retinopathy. Semin Ophthalmol 27:226–232

    Article  Google Scholar 

  33. Campbell JP, Leder HA, Sepah YJ et al (2012) Wide-field retinal imaging in the management of noninfectious posterior uveitis. Am J Ophthalmol 154:908–911

    Article  PubMed  Google Scholar 

  34. Tsui I, Franco-Cardenas V, Hubschman JP et al (2012) Ultra wide field fluorescein angiography can detect macular pathology in central retinal vein occlusion. Ophthalmic Surg Lasers Imaging 43:257–262

    Article  PubMed  Google Scholar 

  35. Witmer MT, Kozbial A, Daniel S et al (2012) Peripheral autofluorescence findings in age-related macular degeneration. Acta Ophthalmol 90:e428–e433

    Article  PubMed  Google Scholar 

  36. Galvao J, Davis B, Tilley M et al (2013) Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J. doi:10.1096/fj.13-235440

    PubMed  Google Scholar 

  37. Guo L, Salt TE, Maass A et al (2006) Assessment of neuroprotective effects of glutamate modulation on glaucoma-related retinal ganglion cell apoptosis in vivo. Invest Ophthalmol Vis Sci 47:626–633

    Article  PubMed Central  PubMed  Google Scholar 

  38. Guo L, Salt TE, Luong V et al (2007) Targeting amyloid-beta in glaucoma treatment. Proc Natl Acad Sci U S A 104:13444–13449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Bizrah M, Dakin SC, Guo L, Rahman F, Parnell M, Normando E, Nizari S, Davis B, Younis A, Cordeiro MF (2014) A semi-automated technique for labeling and counting of apoptosing retinal cells. BMC Bioinform 15:169. doi:10.1186/1471-2105-15-169

    Article  Google Scholar 

Download references

Conflict of Interest

M. Francesca Cordeiro is an inventor on patent applications owned by UCL and pertaining to Detection of Apoptosing Retinal Cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Francesca Cordeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Normando, E.M., Dehabadi, M.H., Guo, L., Turner, L.A., Pollorsi, G., Cordeiro, M.F. (2015). Real-Time Imaging of Retinal Cell Apoptosis by Confocal Scanning Laser Ophthalmoscopy. In: Lossi, L., Merighi, A. (eds) Neuronal Cell Death. Methods in Molecular Biology, vol 1254. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2152-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2152-2_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2151-5

  • Online ISBN: 978-1-4939-2152-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics