Skip to main content

In Vitro Oxygen-Glucose Deprivation to Study Ischemic Cell Death

  • Protocol
  • First Online:
Neuronal Cell Death

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1254))

Abstract

Oxygen-glucose deprivation (OGD ) is widely used as an in vitro model for stroke , showing similarities with the in vivo models of brain ischemia . In order to perform OGD, cell or tissue cultures , such as primary neurons or organotypic slices , and acutely prepared tissue slices are usually incubated in a glucose-free medium under a deoxygenated atmosphere , for example in a hypoxic chamber . Here, we describe the step-by-step procedure to expose cultures and acute slices to OGD, focusing on the most suitable methods for assessing cellular death and/or viability . OGD is a simple yet highly useful technique, not only for the elucidation of the role of key cellular and molecular mechanisms underlying brain ischemia, but also for the development of novel neuroprotective strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee YJ, Castri P, Bembry J et al (2009) SUMOylation participates in induction of ischemic tolerance. J Neurochem 109:257–267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Cimarosti H, Ashikaga E, Jaafari N et al (2012) Enhanced SUMOylation and SENP-1 protein levels following oxygen and glucose deprivation in neurones. J Cereb Blood Flow Metab 32:17–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Cimarosti H, Kantamneni S, Henley JM (2009) Ischaemia differentially regulates GABA(B) receptor subunits in organotypic hippocampal slice cultures. Neuropharmacology 56:1088–1096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Dal-Cim T, Martins WC, Santos AR et al (2011) Guanosine is neuroprotective against oxygen/glucose deprivation in hippocampal slices via large conductance Ca2+-activated K+ channels, phosphatidilinositol-3 kinase/protein kinase B pathway activation and glutamate uptake. Neuroscience 183:212–220

    Article  CAS  PubMed  Google Scholar 

  5. Oleskovicz SP, Martins WC, Leal RB et al (2008) Mechanism of guanosine-induced neuroprotection in rat hippocampal slices submitted to oxygen-glucose deprivation. Neurochem Int 52:411–418

    Article  CAS  PubMed  Google Scholar 

  6. Colak G, Keillor JW, Johnson GV (2011) Cytosolic guanine nucleotide binding deficient form of transglutaminase 2 (R580a) potentiates cell death in oxygen glucose deprivation. PLoS One 6:e16665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Wang R, Zhang X, Zhang J et al (2012) Oxygen-glucose deprivation induced glial scar-like change in astrocytes. PLoS One 7:e37574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Gahwiler BH, Capogna M, Debanne D et al (1997) Organotypic slice cultures: a technique has come of age. Trends Neurosci 20:471–477

    Article  CAS  PubMed  Google Scholar 

  9. Newell DW, Malouf AT, Franck JE (1990) Glutamate-mediated selective vulnerability to ischemia is present in organotypic cultures of hippocampus. Neurosci Lett 116:325–330

    Article  CAS  PubMed  Google Scholar 

  10. Cho S, Liu D, Fairman D et al (2004) Spatiotemporal evidence of apoptosis-mediated ischemic injury in organotypic hippocampal slice cultures. Neurochem Int 45:117–127

    Article  CAS  PubMed  Google Scholar 

  11. Dennis SH, Jaafari N, Cimarosti H et al (2011) Oxygen/glucose deprivation induces a reduction in synaptic AMPA receptors on hippocampal CA3 neurons mediated by mGluR1 and adenosine A3 receptors. J Neurosci 31:11941–11952

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Oliveira IJ, Molz S, Souza DO et al (2002) Neuroprotective effect of GMP in hippocampal slices submitted to an in vitro model of ischemia. Cell Mol Neurobiol 22:335–344

    Article  CAS  PubMed  Google Scholar 

  13. Cimarosti H, Rodnight R, Tavares A et al (2001) An investigation of the neuroprotective effect of lithium in organotypic slice cultures of rat hippocampus exposed to oxygen and glucose deprivation. Neurosci Lett 315:33–36

    Article  CAS  PubMed  Google Scholar 

  14. Cimarosti H, Zamin LL, Frozza R et al (2005) Estradiol protects against oxygen and glucose deprivation in rat hippocampal organotypic cultures and activates Akt and inactivates GSK-3beta. Neurochem Res 30:191–199

    Article  CAS  PubMed  Google Scholar 

  15. Fontella FU, Cimarosti H, Crema LM et al (2005) Acute and repeated restraint stress influences cellular damage in rat hippocampal slices exposed to oxygen and glucose deprivation. Brain Res Bull 65:443–450

    Article  CAS  PubMed  Google Scholar 

  16. Scopel D, Fochesatto C, Cimarosti H et al (2006) Exercise intensity influences cell injury in rat hippocampal slices exposed to oxygen and glucose deprivation. Brain Res Bull 71:155–159

    Article  CAS  PubMed  Google Scholar 

  17. Gerace E, Landucci E, Scartabelli T et al (2012) Rat hippocampal slice culture models for the evaluation of neuroprotective agents. Methods Mol Biol 846:343–354

    Article  PubMed  Google Scholar 

  18. Giordano G, Costa LG (2011) Primary neurons in culture and neuronal cell lines for in vitro neurotoxicological studies. Methods Mol Biol 758:13–27

    Article  CAS  PubMed  Google Scholar 

  19. Pocock JM, Nicholls DG (1998) Exocytotic and nonexocytotic modes of glutamate release from cultured cerebellar granule cells during chemical ischaemia. J Neurochem 70:806–813

    Article  CAS  PubMed  Google Scholar 

  20. Strasser U, Fischer G (1995) Quantitative measurement of neuronal degeneration in organotypic hippocampal cultures after combined oxygen/glucose deprivation. J Neurosci Methods 57:177–186

    Article  CAS  PubMed  Google Scholar 

  21. Egea J, Martin-de-Saavedra MD, Parada E et al (2012) Galantamine elicits neuroprotection by inhibiting iNOS, NADPH oxidase and ROS in hippocampal slices stressed with anoxia/reoxygenation. Neuropharmacology 62:1082–1090

    Article  CAS  PubMed  Google Scholar 

  22. Parada E, Egea J, Buendia I et al (2013) The microglial alpha7-acetylcholine nicotinic receptor is a key element in promoting neuroprotection by inducing heme oxygenase-1 via nuclear factor erythroid-2-related factor 2. Antioxid Redox Signal 19:1135–1148. doi:10.1089/ars.2012.4671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Piermartiri TC, Vandresen-Filho S, de Araujo Herculano B et al (2009) Atorvastatin prevents hippocampal cell death due to quinolinic acid-induced seizures in mice by increasing Akt phosphorylation and glutamate uptake. Neurotox Res 16:106–115

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y, Peterson DA, Kimura H et al (1997) Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem 69:581–593

    Article  CAS  PubMed  Google Scholar 

  25. Feiner JR, Bickler PE, Estrada S et al (2005) Mild hypothermia, but not propofol, is neuroprotective in organotypic hippocampal cultures. Anesth Analg 100:215–225

    Article  CAS  PubMed  Google Scholar 

  26. Koh JY, Choi DW (1987) Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Methods 20:83–90

    Article  CAS  PubMed  Google Scholar 

  27. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. U.F.J. Mayer for his invaluable assistance with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Cimarosti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tasca, C.I., Dal-Cim, T., Cimarosti, H. (2015). In Vitro Oxygen-Glucose Deprivation to Study Ischemic Cell Death. In: Lossi, L., Merighi, A. (eds) Neuronal Cell Death. Methods in Molecular Biology, vol 1254. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2152-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2152-2_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2151-5

  • Online ISBN: 978-1-4939-2152-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics