Skip to main content

Neuronal Cell Death: An Overview of Its Different Forms in Central and Peripheral Neurons

  • Protocol
  • First Online:
Neuronal Cell Death

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1254))

Abstract

The discovery of neuronal cell death dates back to the nineteenth century. Nowadays, after a very long period of conceptual difficulties, the notion that cell death is a phenomenon occurring during the entire life course of the nervous system , from neurogenesis to adulthood and senescence , is fully established. The dichotomy between apoptosis , as the prototype of programmed cell death (PCD ), and necrosis , as the prototype of death caused by an external insult, must be carefully reconsidered, as different types of PCD: apoptosis, autophagy , pyroptosis , and oncosis have all been demonstrated in neurons (and glia ). These modes of PCD may be triggered by different stimuli, but share some intracellular pathways such that different types of cell death may affect the same population of neurons according to several intrinsic and extrinsic factors. Therefore, a mixed morphology is often observed also depending on degrees of differentiation , activity, and injury . The main histological and ultrastructural features of the different types of cell death in neurons are described and related to the cellular pathways that are specifically activated in any of these types of PCD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Several years before Darwin published his famous book On the Origin of Species by Means of Natural Selection (1859), very interestingly Vogt used the German term Evolution, but in the meaning of development, which is more appropriately indicated with the German word Entwicklung.

References

  1. Vogt C (1842) Untersuchungen uber die Entwicklungsgeschichte der Geburtshelfer-kröte (Alytes obstetricans). Jent und Gassmann, Solothurn

    Google Scholar 

  2. Virchow R (1858) Vorlesungen über Cellularpathologie in ihrer Begründung auf physiologischer und pathologischer Gewe-belehre. Verlag August Hirschwald, Berlin

    Google Scholar 

  3. Clarke PG, Clarke S (2012) Nineteenth century research on cell death. Exp Oncol 34:139–145

    CAS  PubMed  Google Scholar 

  4. Stieda L (1872) Die Bildung des Knochengewebes: Festschrift des Naturfor-schervereins zu Riga, zur Feier des Fünfzigjährigen Bestehens der Gesellschaft Practischer Aerzte zu Riga. Engelmann, Leipzig

    Google Scholar 

  5. Flemming W (1885) Über die Bildung von Richtungsfiguren in Säugethiereiern beim Untergang Graaf'scher Follikel. Arch Anat Entwickl:221–244

    Google Scholar 

  6. Rao MS, Jacobson M (2005) Developmental neurobiology, IVth edn. Kluwer Academic/Plenum Publishers, New York, Boston, Dordrecht, London, Moscow

    Book  Google Scholar 

  7. Beard J (1889) On the early development of Lepidosteus osseus—preliminary notice. Proc Roy Soc Lond 46:108–118

    Article  Google Scholar 

  8. Beard J (1892) The transient ganglion cells and their nerves in Raja batis. Anat Anz 7:191–206

    Google Scholar 

  9. Collin R (1906) Histolyse de certains neuroblastes au cours du développement du tube nerveux chez le poulet. C R Soc Biol 60:1080–1081

    Google Scholar 

  10. Ernst M (1926) Über Untergang von Zellen während der normalen Entwicklung bei Wirbeltieren. Z Anat Entwicklungsgesch 79:228–262

    Article  Google Scholar 

  11. Glücksmann PD (1951) Cell deaths in normal vertebrate ontogeny. Biol Rev 26:59–86

    Article  PubMed  Google Scholar 

  12. Levi-Montalcini R, Cohen S (1960) Effects of the extract of the mouse submaxillary salivary glands on the sympathetic system of mammals. Ann N Y Acad Sci 85:324–341

    CAS  PubMed  Google Scholar 

  13. Hamburger V (1958) Regression versus peripheral control of differentiation in motor hypoplasia. Am J Anat 102:365–409

    Article  CAS  PubMed  Google Scholar 

  14. Hughes A (1961) Cell degeneration in the larval ventral horn of Xenopus laevis (Daudin). J Embryol Exp Morphol 9:269–284

    CAS  PubMed  Google Scholar 

  15. Hughes AF, Lewis PR (1961) Effect of limb ablation on neurones in Xenopus larvae. Nature 189:333–334

    Article  CAS  PubMed  Google Scholar 

  16. Prestige MC (1965) Cell turnover in the spinal ganglia of Xenopus laevis tadpoles. J Embryol Exp Morphol 13:63–72

    CAS  PubMed  Google Scholar 

  17. Lossi L, Merighi A (2003) In vivo cellular and molecular mechanisms of neuronal apoptosis in the mammalian CNS. Prog Neurobiol 69:287–312

    Article  CAS  PubMed  Google Scholar 

  18. Virchow R (1858) Cellularpathologie in ihre Begrundung auf Physiologische und Pathologische Gewebelehre. A. Hirschwal, Berlin

    Google Scholar 

  19. Schweichel JU, Merker HJ (1973) The morphology of various types of cell death in prenatal tissues. Teratology 7:253–266

    Article  CAS  PubMed  Google Scholar 

  20. Clarke PGH (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol 181:195–213

    Article  CAS  PubMed  Google Scholar 

  21. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lossi L, Mioletti S, Merighi A (2002) Synapse-independent and synapse-dependent apoptosis of cerebellar granule cells in postnatal rabbits occur at two subsequent but partly overlapping developmental stages. Neuroscience 112:509–523

    Article  CAS  PubMed  Google Scholar 

  23. Lossi L, Mioletti S, Aimar P, Bruno R, Merighi A (2002) In vivo analysis of cell proliferation and apoptosis in the CNS. In: Merighi A, Carmignoto G (eds) Cellular and molecular methods in neuroscience research. Springer Verlag, New York, pp 235–258

    Chapter  Google Scholar 

  24. de Duve C (1963) The lysosome. Sci Am 208:64–72

    Article  Google Scholar 

  25. Rosello A, Warnes G, Meier UC (2012) Cell death pathways and autophagy in the central nervous system and its involvement in neurodegeneration, immunity and central nervous system infection: to die or not to die—that is the question. Clin Exp Immunol 168:52–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Maiuri MC, Zalckvar E, Kimchi A et al (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    Article  CAS  PubMed  Google Scholar 

  27. Galluzzi L, Maiuri MC, Vitale I et al (2007) Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14:1237–1243

    Article  CAS  PubMed  Google Scholar 

  28. Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7:99–109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Denes A, Lopez-Castejon G, Brough D (2012) Caspase-1: is IL-1 just the tip of the ICEberg? Cell Death Dis 3:e338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Li P, Allen H, Banerjee SK et al (1995) Mice deficient in IL-1 beta converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxin shock. Cell 80:401–411

    Article  CAS  PubMed  Google Scholar 

  31. Kuida K, Lippke JA, Ku G et al (1995) Altered cytokine export and apoptosis in mice deficient in interleukine-1-beta converting enzyme. Science 267:2000–2003

    Article  CAS  PubMed  Google Scholar 

  32. Zhang WH, Wang X, Narayanan M et al (2003) Fundamental role of the Rip2/caspase-1 pathway in hypoxia and ischemia-induced neuronal cell death. Proc Natl Acad Sci U S A 100:16012–16017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Friedlander RM, Brown RH, Gagliardini V et al (1997) Inhibition of ICE slows ALS in mice. Nature 388:31

    Article  CAS  PubMed  Google Scholar 

  34. Friedlander RM, Gagliardini V, Hara H et al (1997) Expression of a dominant negative mutant of interleukin-1 beta converting enzyme in transgenic mice prevents neuronal cell death induced by trophic factor withdrawal and ischemic brain injury. J Exp Med 185:933–940

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Gagliardini V, Fernandez PA, Lee RK et al (1994) Prevention of vertebrate neuronal death by the crmA gene. Science 263:826–828

    Article  CAS  PubMed  Google Scholar 

  36. Weerasinghe P, Buja LM (2012) Oncosis: an important non-apoptotic mode of cell death. Exp Mol Pathol 93:302–308

    Article  CAS  PubMed  Google Scholar 

  37. Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Trump BF, Berezesky IK, Chang SH et al (1997) The pathways of cell death: oncosis, apoptosis, and necrosis. Toxicol Pathol 25:82–88

    Article  CAS  PubMed  Google Scholar 

  39. Jugdutt BI, Idikio HA (2005) Apoptosis and oncosis in acute coronary syndromes: assessment and implications. Mol Cell Biochem 270:177–200

    Article  CAS  PubMed  Google Scholar 

  40. Buja LM, Eigenbrodt ML, Eigenbrodt EH (1993) Apoptosis and necrosis. Basic types and mechanisms of cell death. Arch Pathol Lab Med 117:1208–1214

    CAS  PubMed  Google Scholar 

  41. Buja LM (2005) Myocardial ischemia and reperfusion injury. Cardiovasc Pathol 14:170–175

    Article  CAS  PubMed  Google Scholar 

  42. O’Brien MC, Healy SF Jr, Raney SR et al (1997) Discrimination of late apoptotic/necrotic cells (type III) by flow cytometry in solid tumors. Cytometry 28:81–89

    Article  PubMed  Google Scholar 

  43. Cao X, Zhang Y, Zou L et al (2010) Persistent oxygen-glucose deprivation induces astrocytic death through two different pathways and calpain-mediated proteolysis of cytoskeletal proteins during astrocytic oncosis. Neurosci Lett 479:118–122

    Article  CAS  PubMed  Google Scholar 

  44. Chu X, Fu X, Zou L et al (2007) Oncosis, the possible cell death pathway in astrocytes after focal cerebral ischemia. Brain Res 1149: 157–164

    Article  CAS  PubMed  Google Scholar 

  45. Blatt NB, Glick GD (2001) Signaling pathways and effector mechanisms pre-programmed cell death. Bioorg Med Chem 9:1371–1384

    Article  CAS  PubMed  Google Scholar 

  46. Adams JM, Cory S (2002) Apoptosomes: engines for caspase activation. Curr Opin Cell Biol 14:715–720

    Article  CAS  PubMed  Google Scholar 

  47. Fesus L, Nemes Z, Piredda L et al (1987) Induction and activation of tissue transglutaminase during programmed cell death. FEBS Lett 224:104–108

    Article  CAS  PubMed  Google Scholar 

  48. Bortner CD, Oldenburg NB, Cidlowski JA (1995) The role of DNA fragmentation in apoptosis. Trends Cell Biol 5:21–26

    Article  CAS  PubMed  Google Scholar 

  49. Fadok VA, Voelker D, Campbell PA et al (1992) Exposure of phosphatidylserine on the surface of apoptotic lypmphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207–2216

    CAS  PubMed  Google Scholar 

  50. van Engeland M, Nieland LJ, Ramaekers FC et al (1998) Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31:1–9

    Article  PubMed  Google Scholar 

  51. Arur S, Uche UE, Rezaul K et al (2003) Annexin I is an endogenous ligand that mediates apoptotic cell engulfment. Dev Cell 4:587–598

    Article  CAS  PubMed  Google Scholar 

  52. Martins I, Kepp O, Galluzzi L et al (2010) Surface-exposed calreticulin in the interaction between dying cells and phagocytes. Ann N Y Acad Sci 1209:77–82

    Article  CAS  PubMed  Google Scholar 

  53. McArthur S, Cristante E, Paterno M et al (2010) Annexin A1: a central player in the anti-inflammatory and neuroprotective role of microglia. J Immunol 185:6317–6328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Sastry PS, Rao K (2000) Apoptosis in the nervous system. J Neurochem 74:1–20

    Article  CAS  PubMed  Google Scholar 

  55. Saelens X, Festjens N, Vande WL et al (2004) Toxic proteins released from mitochondria in cell death. Oncogene 23:2861–2874

    Article  CAS  PubMed  Google Scholar 

  56. Cai J, Yang J, Jones DP (1998) Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta 1366:139–149

    Article  CAS  PubMed  Google Scholar 

  57. Du C, Fang M, Li Y et al (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42

    Article  CAS  PubMed  Google Scholar 

  58. van Loo G, van Gurp M, Depuydt B et al (2002) The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ 9:20–26

    Article  PubMed  Google Scholar 

  59. van Loo G, Saelens X, van Gurp M et al (2002) The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ 9:1031–1042

    Article  PubMed  Google Scholar 

  60. van Loo G, Saelens X, Matthijssens F et al (2002) Caspases are not localized in mitochondria during life or death. Cell Death Differ 9:1207–1211

    Article  PubMed  Google Scholar 

  61. Joza N, Susin SA, Daugas E et al (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410:549–554

    Article  CAS  PubMed  Google Scholar 

  62. Susin SA, Lorenzo HK, Zamzami N et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  CAS  PubMed  Google Scholar 

  63. Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99

    Article  CAS  PubMed  Google Scholar 

  64. Enari M, Sakahira H, Yokoyama H et al (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50

    Article  CAS  PubMed  Google Scholar 

  65. Susin SA, Daugas E, Ravagnan L et al (2000) Two distinct pathways leading to nuclear apoptosis. J Exp Med 192:571–580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    Article  CAS  PubMed  Google Scholar 

  67. Adams JM, Cory S (2001) Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 26:61–66

    Article  CAS  PubMed  Google Scholar 

  68. Lossi L, Gambino G, Ferrini F et al (2009) Posttranslational regulation of BCL2 levels in cerebellar granule cells: a mechanism of neuronal survival. Dev Neurobiol 69:855–870

    Article  CAS  PubMed  Google Scholar 

  69. Lossi L, Gambino G, Salio C et al (2010) Autophagy regulates the post-translational cleavage of BCL-2 and promotes neuronal survival. ScientificWorldJournal 10:924–929

    Article  CAS  PubMed  Google Scholar 

  70. Hara T, Takamura A, Kishi C et al (2008) FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 181:497–510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Jung CH, Jun CB, Ro SH et al (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20:1992–2003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Itakura E, Kishi C, Inoue K et al (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19:5360–5372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Sun Q, Fan W, Chen K et al (2008) Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A 105:19211–19216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Chan EY, Longatti A, McKnight NC et al (2009) Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol 29:157–171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Young AR, Chan EY, Hu XW et al (2006) Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 119:3888–3900

    Article  CAS  PubMed  Google Scholar 

  76. Tanaka Y, Guhde G, Suter A et al (2000) Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406:902–906

    Article  CAS  PubMed  Google Scholar 

  77. Jager S, Bucci C, Tanida I et al (2004) Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci 117:4837–4848

    Article  PubMed  Google Scholar 

  78. Tanida I, Minematsu-Ikeguchi N, Ueno T et al (2005) Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1:84–91

    Article  CAS  PubMed  Google Scholar 

  79. Zhu JH, Horbinski C, Guo F et al (2007) Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am J Pathol 170:75–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73:1907–1916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Fink SL, Cookson BT (2006) Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol 8:1812–1825

    Article  CAS  PubMed  Google Scholar 

  82. Brennan MA, Cookson BT (2000) Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol Microbiol 38:31–40

    Article  CAS  PubMed  Google Scholar 

  83. Jesenberger V, Procyk KJ, Yuan J et al (2000) Salmonella-induced caspase-2 activation in macrophages: a novel mechanism in pathogen-mediated apoptosis. J Exp Med 192:1035–1046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Ma F, Zhang C, Prasad KV et al (2001) Molecular cloning of Porimin, a novel cell surface receptor mediating oncotic cell death. Proc Natl Acad Sci U S A 98:9778–9783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Eguchi Y, Shimizu S, Tsujimoto Y (1997) Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57:1835–1840

    CAS  PubMed  Google Scholar 

  86. Huang Q, Zhang R, Zou L et al (2013) Cell death pathways in astrocytes with a modified model of oxygen-glucose deprivation. PLoS One 8:e61345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Kroemer G (1997) The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med 3:614–620

    Article  CAS  PubMed  Google Scholar 

  88. Lossi L, Cantile C, Tamagno I et al (2005) Apoptosis in the mammalian CNS: lessons from animal models. Vet J 170:52–66

    Article  CAS  PubMed  Google Scholar 

  89. Lossi L, Tamagno I, Merighi A (2004) Molecular morphology of neuronal apoptosis: activation of caspase 3 during postnatal development of mouse cerebellar cortex. J Mol Histol 35:621–629

    CAS  PubMed  Google Scholar 

  90. Blomgren K, Leist M, Groc L (2007) Pathological apoptosis in the developing brain. Apoptosis 12:993–1010

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Matthew Bradman for his critical reading of the text and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adalberto Merighi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lossi, L., Castagna, C., Merighi, A. (2015). Neuronal Cell Death: An Overview of Its Different Forms in Central and Peripheral Neurons. In: Lossi, L., Merighi, A. (eds) Neuronal Cell Death. Methods in Molecular Biology, vol 1254. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2152-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2152-2_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2151-5

  • Online ISBN: 978-1-4939-2152-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics