Advertisement

Detection of Protein Cage Assembly with Bisarsenic Fluorescent Probes

  • Thomas A. Cornell
  • Brendan P. OrnerEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1252)

Abstract

We describe a method for the detection of specific protein-protein interactions in protein cages through the exploitation of designed binding sites for bisarsenic fluorescent probes. These sites are engineered to be protein-protein interface specific. We have adapted this method to ferritins; however, it could conceivably be applied to other protein cages. It is thought that this technique could be utilized in the thermodynamic and kinetic characterization of cage assembly mechanisms and in the high-throughput screening of protein cage libraries for the discovery of proteins with new assembly properties or of optimized conditions for assembly.

Key words

FlAsH-EDT2 Protein-protein interactions Fluorescence detection Oligomerization state Ferritin 

References

  1. 1.
    Kis K, Volk R, Bacher A (1995) Biosynthesis of riboflavin - studies on the reaction-mechanism of 6,7-dimethyl-8-ribityllumazine synthase. Biochemistry 34:2883–2892PubMedCrossRefGoogle Scholar
  2. 2.
    Walter S, Buchner J (2002) Molecular chaperones - cellular machines for protein folding. Angew Chem Int Ed Engl 41:1098–1113PubMedCrossRefGoogle Scholar
  3. 3.
    Homa FL, Brown JC (1997) Capsid assembly and DNA packaging in herpes simplex virus. Rev Med Virol 7:107–122PubMedCrossRefGoogle Scholar
  4. 4.
    Aisen P, Listowsky I (1980) Iron transport and storage proteins. Annu Rev Biochem 49:357–393PubMedCrossRefGoogle Scholar
  5. 5.
    Theil EC (1987) Ferritin - structure, gene-regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem 56:289–315PubMedCrossRefGoogle Scholar
  6. 6.
    Douglas T, Strable E, Willits D, Aitouchen A, Libera M, Young M (2002) Protein engineering of a viral cage for constrained nanomaterials synthesis. Adv Mater 14:415–418CrossRefGoogle Scholar
  7. 7.
    Fan R, Chew SW, Cheong VV, Orner BP (2010) Fabrication of gold nanoparticles inside unmodified horse spleen apoferritin. Small 6:1483–1487PubMedCrossRefGoogle Scholar
  8. 8.
    Fletcher JM, Harniman RL, Barnes FRH, Boyle AL, Collins A, Mantell J, Sharp TH, Antognozzi M, Booth PJ, Linden N, Miles MJ, Sessions RB, Verkade P, Woolfson DN (2013) Self-assembling cages from coiled-coil peptide modules. Science 340:595–599PubMedCrossRefGoogle Scholar
  9. 9.
    Tinberg CE, Khare SD, Dou J, Doyle L, Nelson JW, Schena A, Jankowski W, Kalodimos CG, Johnsson K, Stoddard BL, Baker D (2013) Computational design of ligand-binding proteins with high affinity and selectivity. Nature 501:212–216PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Fan R, Boyle AL, Cheong VV, Ng SL, Orner BP (2009) A helix swapping study of two protein cages. Biochemistry 48:5623–5630PubMedCrossRefGoogle Scholar
  11. 11.
    Ardejani MS, Li NX, Orner BP (2011) Stabilization of a protein nanocage through the plugging of a protein-protein interfacial water pocket. Biochemistry 50:4029–4037PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang Y, Fu J, Chee SY, Ang EXW, Orner BP (2011) Rational disruption of the oligomerization of the mini-ferritin E. coli DPS through protein-protein interface mutation. Protein Sci 20:1907–1917PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Zhang Y, Orner BP (2011) Self-assembly in the ferritin nano-cage protein superfamily. Int J Mol Sci 12:5406–5421PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Ardejani MS, Chok XL, Foo CJ, Orner BP (2013) Complete shift of ferritin oligomerization toward nanocage assembly via engineered protein-protein interactions. Chem Commun 49:3528–3530CrossRefGoogle Scholar
  15. 15.
    Grueninger D, Treiber N, Ziegler MOP, Koetter JWA, Schulze M-S, Schulz GE (2008) Designed protein-protein association. Science 319:206–209PubMedCrossRefGoogle Scholar
  16. 16.
    Ozawa T (2006) Designing split reporter proteins for analytical tools. Anal Chim Acta 556:58–68PubMedCrossRefGoogle Scholar
  17. 17.
    Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395PubMedCrossRefGoogle Scholar
  18. 18.
    Paulmurugan R, Umezawa Y, Gambhir SS (2002) Noninvasive imaging of protein–protein interactions in living subjects by using reporter protein complementation and reconstitution strategies. Proc Natl Acad Sci USA 99:15608–15613PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Stains CI, Furman JL, Porter JR, Rajagopal S, Li Y, Wyatt RT, Ghosh I (2010) A general approach for receptor and antibody-targeted detection of native proteins utilizing split-luciferase reassembly. ACS Chem Biol 5:943–952PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887PubMedCrossRefGoogle Scholar
  21. 21.
    Gratzner HG (1982) Monoclonal-antibody to 5-bromodeoxyuridine and 5-iododeoxyuridine - a new reagent for detection of DNA-replication. Science 218:474–475PubMedCrossRefGoogle Scholar
  22. 22.
    Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) Review - the fluorescent toolbox for assessing protein location and function. Science 312:217–224PubMedCrossRefGoogle Scholar
  23. 23.
    Neef AB, Schultz C (2009) Selective fluorescence labeling of lipids in living cells. Angew Chem Int Ed Engl 48:1498–1500PubMedCrossRefGoogle Scholar
  24. 24.
    Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281:269–272PubMedCrossRefGoogle Scholar
  25. 25.
    Stroffekova K, Proenza C, Beam KG (2001) The protein-labeling reagent FLASH-EDT2 binds not only to CCXXCC motifs but also non-specifically to endogenous cysteine-rich proteins. Pflugers Arch 442:859–866PubMedCrossRefGoogle Scholar
  26. 26.
    Luedtke NW, Dexter RJ, Fried DB, Schepartz A (2007) Surveying polypeptide and protein domain conformation and association with FlAsH and ReAsH. Nat Chem Biol 3:779–784PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Goodman JL, Fried DB, Schepartz A (2009) Bipartite tetracysteine display requires site flexibility for ReAsH coordination. Chembiochem 10:1644–1647PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Scheck RA, Lowder MA, Appelbaum JS, Schepartz A (2012) Bipartite tetracysteine display reveals allosteric control of ligand-specific EGFR activation. ACS Chem Biol 7:1367–1376PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Cornell TA, Fu J, Newland SH, Orner BP (2013) Detection of specific protein–protein interactions in nanocages by engineering bipartite FlAsH binding sites. J Am Chem Soc 135:16618–16624PubMedCrossRefGoogle Scholar
  30. 30.
    Martin BR, Giepmans BNG, Adams SR, Tsien RY (2005) Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat Biotechnol 23:1308–1314PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of ChemistryKing’s College LondonLondonUK
  2. 2.Department of Chemistry, School of Natural and Mathematical SciencesKing’s College LondonLondonUK

Personalised recommendations