Skip to main content

Recombinant Expression and Purification of “Virus-like” Bacterial Encapsulin Protein Cages

  • Protocol
  • First Online:
Book cover Protein Cages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1252))

Abstract

Ultracentrifugation, particularly the use of sucrose or cesium chloride density gradients, is a highly reliable and efficient technique for the purification of virus-like particles and protein cages. Since virus-like particles and protein cages have a unique size compared to cellular macromolecules and organelles, the rate of migration can be used as a tool for purification. Here we describe a detailed protocol for the purification of recently discovered virus-like assemblies called bacterial encapsulins from Thermotoga maritima and Brevibacterium linens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu Z, Qiao J, Niu Z, Wang Q (2012) Natural supramolecular building blocks: from virus coat proteins to viral nanoparticles. Chem Soc Rev 41:6178–6194

    Article  PubMed  CAS  Google Scholar 

  2. Liu X, Theil EC (2004) Ferritin reactions: direct identification of the site for the diferric peroxide reaction intermediate. Proc Natl Acad Sci U S A 101:8557–8562

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Lawrence JE, Steward GF (2010) Purification of viruses by centrifugation. In: Wilhelm SW, Weinbauer MG, Suttle CA (eds) Manual of aquatic viral ecology. American Society of Limnology and Oceanography, Waco, TX, pp 166–181

    Chapter  Google Scholar 

  4. Kramer RM, Li C, Carter DC, Stone MO, Naik RR (2004) Engineered protein cages for nanomaterial synthesis. J Am Chem Soc 126:13282–13286

    Article  PubMed  CAS  Google Scholar 

  5. Henry M, Debarbieux L (2012) Tools from viruses: bacteriophage successes and beyond. Virology 434:151–161

    Article  PubMed  CAS  Google Scholar 

  6. Frank S, Lawrence AD, Prentice MB, Warren MJ (2013) Bacterial microcompartments moving into a synthetic biological world. J Biotechnol 163:273–279

    Article  PubMed  CAS  Google Scholar 

  7. Choudhary S, Quin MB, Sanders MA, Johnson ET, Schmidt-Dannert C (2012) Engineered protein nano-compartments for targeted enzyme localization. PLoS One 7:e33342

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Chen AH, Silver PA (2012) Designing biological compartmentalization. Trends Cell Biol 22:662–670

    Article  PubMed  CAS  Google Scholar 

  9. Banyard SH, Stammers DK, Harrison PM (1978) Electron density map of apoferritin at 2.8-A resolution. Nature 271:282–284

    Article  PubMed  CAS  Google Scholar 

  10. Vriezema DM, Comellas Aragones M, Elemans JA, Cornelissen JJLM, Rowan AE, Nolte RJ (2005) Self-assembled nanoreactors. Chem Rev 105:1445–1489

    Article  PubMed  CAS  Google Scholar 

  11. Uchida M, Klem MT, Allen M, Suci P, Flenniken M, Gillitzer E, Varpness Z, Liepold LO, Young M, Douglas T (2007) Biological containers: protein cages as multifunctional nanoplatforms. Adv Mater 19:1025–1042

    Article  CAS  Google Scholar 

  12. Douglas T, Young M (2006) Viruses: making friends with old foes. Science 312:873–875

    Article  PubMed  CAS  Google Scholar 

  13. Rahmanpour R, Bugg TDH (2013) Assembly in vitro of Rhodococcus jostii RHA1 encapsulin and peroxidase DypB to form a nano-compartment. FEBS J 280:2097–2104

    Article  PubMed  CAS  Google Scholar 

  14. Sutter M, Boehringer D, Gutmann S, Gunther S, Prangishvili D, Loessner MJ, Stetter KO, Weber-Ban E, Ban N (2008) Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nat Struct Mol Biol 15:939–947

    Article  PubMed  CAS  Google Scholar 

  15. Tsai Y, Sawaya MR, Cannon GC, Cai F, Williams EB, Heinhorst S, Kerfeld CA, Yeates TO (2007) Structural analysis of CsoS1A and the protein shell of the Halothiobacillus neapolitanus carboxysome. PLoS Biol 5:e144

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tanaka S, Kerfeld C, Sawaya M, Cai F, Heinhorst S, Cannon G, Yeates T (2008) Atomic-level models of the bacterial carboxysome shell. Science 319:1083–1086

    Article  PubMed  CAS  Google Scholar 

  17. Fan C, Cheng S, Liu Y, Escobar C, Crowley C, Jefferson R, Yeates T, Bobik T (2010) Short N-terminal sequences package proteins into bacterial microcompartments. Proc Natl Acad Sci U S A 107:7509–7514

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Cheng SQ, Liu Y, Crowley CS, Yeates TO, Bobik TA (2008) Bacterial microcompartments: their properties and paradoxes. Bioessays 30:1084–1095

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Cannon G, Bradburne C, Aldrich H, Baker S, Heinhorst S, Shively J (2001) Microcompartments in prokaryotes: carboxysomes and related polyhedra. Appl Environ Microbiol 67:5351–5361

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Usselman RJ, Walter ED, Willits D, Douglas T, Young M, Singel DJ (2011) Monitoring structural transitions in icosahedral virus protein cages by site-directed spin labeling. J Am Chem Soc 133:4156–4159

    Article  PubMed  CAS  Google Scholar 

  21. Kang S, Suci PA, Broomell CC, Iwahori K, Kobayashi M, Yamashita I, Young M, Douglas T (2009) Janus-like protein cages. Spatially controlled dual-functional surface modifications of protein cages. Nano Lett 9:2360–2366

    Article  PubMed  CAS  Google Scholar 

  22. Minten IJ, Hendriks LJ, Nolte RJ, Cornelissen JJ (2009) Controlled encapsulation of multiple proteins in virus capsids. J Am Chem Soc 131:17771–17773

    Article  PubMed  CAS  Google Scholar 

  23. Lucon J, Qazi S, Uchida M, Bedwell GJ, LaFrance B, Prevelige PE, Douglas T (2012) Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading. Nat Chem 4:781–788

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Glasgow JE, Capehart SL, Francis MB, Tullman-Ercek D (2012) Osmolyte-mediated encapsulation of proteins inside MS2 viral capsids. ACS Nano 6:8658–8664

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Sutter M (2008) Structural basis of enzyme encapsulation into a bacterial nanocompartment. PhD dissertation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa S. T. Koay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rurup, W.F., Cornelissen, J.J.L.M., Koay, M.S.T. (2015). Recombinant Expression and Purification of “Virus-like” Bacterial Encapsulin Protein Cages. In: Orner, B. (eds) Protein Cages. Methods in Molecular Biology, vol 1252. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2131-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2131-7_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2130-0

  • Online ISBN: 978-1-4939-2131-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics